
An Agent-Based Manufacturing System using Asynchronous Messaging

PAULO SOUSA
GECAD – Knowledge Engineering and Decision Support Group

Institute of Engineering – Polytechnic of Porto
R. Dr. António Bernardino de Almeida, 431, 4200-072 Porto

PORTUGAL

Abstract - Recent changes in the society and economy lead to the need to study new approaches to model and develop
an emerging generation of manufacturing systems. Agent-based systems appear as a well suited approach for support-
ing distributed intelligence in manufacturing, allowing autonomy, reactive and pro-active behaviours, and social
abilities support. This paper presents Fabricare, a prototype system for handling the problem of dynamic scheduling
of manufacturing orders. We assume the holonic paradigm as a “vision” and overall guiding structure, while the
agent paradigm is used as a development or implementation technology. In this implementation we use a main stream
programming environment (.net) and the message passing paradigm to convert the existing prototype system devel-
oped in Prolog.

Keywords: agent-based manufacturing, dynamic scheduling, asynchronous messaging.

1 Introduction
Manufacturing has changed (and will continue to
change) [1]; there is a shift from mechanization and
mass production to flexible manufacturing and product
customization as well as customized “digital” services.
Innovation is no longer neglectable and knowledge has
become the primary growth factor as opposed to capital
and labor. The manufacturing company of the future
will use [1] [6] intelligent processes and flexible tools
to achieve new dimensions of flexibility and reactivity;
will support its decisions with knowledge based sys-
tems; and will operate on world-wide networks of
plants, suppliers, delivery and service centers; taking
attention to change and discontinuity in order to
achieve competitive advantage.
As observed by [13], rigid, static and hierarchic manu-
facturing systems are expected to be replaced by adapt-
able and reconfigurable distributed manufacturing sys-
tems where autonomous and flexible manufacturing
entities cooperate in a coherent and coordinated man-
ner [9] [12]. In order to deal with the identified prob-
lems with current manufacturing systems and prepare
them for the expected future scenarios, the new genera-
tion of manufacturing systems must support attributes
as decentralization, distribution, autonomy, adaptabil-
ity, and incomplete information handling [12].
Agent-based systems are “suited for modular, decen-
tralized, dynamic, complex and ill-applications” [7],
showing “a large number of interactions among com-
ponents” [5].

Holonic Systems [4] are based on the concept of holon
with its dual nature representing the whole and part,
allowing for a holon to be part of another holons at the
same time that itself is made up by other holons. This
enables the construction of complex systems that are
efficient resource managers and highly resilient to
changes and disturbances. Holons are by definition
autonomous and cooperative, meaning they have the
ability (and responsibility) to create and execute its
own plans, but also engage in the execution of mutu-
ally accepted plans with other holons.
In the manufacturing arena, Holonic Manufacturing
Systems [13] apply the holonic concept to the manufac-
turing enterprise, allowing the existence of a dynamic
and decentralized manufacturing process where
changes are applied dynamically and continuously.
Agent-based manufacturing systems and holonic manu-
facturing systems are at the same time overlapping and
complementing each other, mainly by using agents as a
development tool for the holonic concept.
To the scope of this work, a holon is understood as a
logical design entity in the system architecture, and is
implemented as an agent. Thus, conceptually, a design
entity in the architecture is a Holon while the software
application that models that entity is an Agent, i.e., the
holonic paradigm provides the vision and “glue” for
the architecture while the agent paradigm provides the
implementation.

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp130-135)

2 Work Description
2.1 Agent’s description
A task holon represents a manufacturing order to exe-
cute a certain quantity of a specific product on the shop
floor. This kind of holon has as its objective to sched-
ule the order and to monitor its execution. Its life cycle
begins when the manufacturing order is created (either
to fulfil a customer order or to balance stocks). During
its existence the task holon will negotiate with resource
holons the execution of the operations needed to per-
form the ordered product. It will then monitor the exe-
cution of the task and renegotiate if necessary. The
holon will cease existing when the order is fulfilled or
cancelled.
A resource holon represents the current state of a
physical resource on the shop floor. The resource’s list
of activities is called agenda, stating what to do and
when. The resource is able to perform operations nec-
essary to execute products (e.g. drill). A resource holon
can represent a single resource or a work cell com-
posed of several resources. The objective of a resource
holon is to control the physical equipment, providing
information about its abilities and status to the system
and managing the scheduled activities. Its life cycle is
very long, since it is expected that a resource is fully
operational for long periods of time. During its exis-
tence, the resource holon executes the commands sent
by the resource controller and negotiates with task
holons the scheduling of manufacturing orders.
For a more detailed description of each agent’s knowl-
edge base and incomplete information handling see
 [10] and for a description of operational behaviour see
 [11].

2.2 Interaction
For the scheduling of task’s sub-operations, the Task
holon will negotiate with Resource holons, using an
extension of the Contract Net Protocol [8] with a co-
operation phase between service providers (i.e. re-
source holons). The Resource holons will use con-
straint propagation in order to guarantee the relation-
ships among different operations that aim at the same
task. This new protocol is called Contract Net with
Constraint Propagation Protocol (CNCPP).
This protocol has six steps (it uses a scheduling
procedure based on agendas and due dates):
1 when a new task arrives at the system (via task

launcher), it will obtain information from the
process planning holon about the product’s alter-

native plans and will choose one based on a set of
criteria given by the scheduling holon based on
the plant current status.

2 the task holon will then contact the resource
holons able to perform each needed operation ac-
cording to the selected plan, informing the re-
source holon of the requested operation and its pa-
rameters, as well as informing it about resource
holons contacted by predecessor and successor
operations.

3 the resource holons will then begin the forward
influence phase by exchanging messages with
their free agendas constrained with the agenda
from predecessor resources in order to determine
the lower limit of each time interval.

4 at the end of the forward influence phase, the
backward influence phase begins. The resources
will then exchange messages with their free agen-
das further constrained with the agendas from suc-
cessor resources in order to determine the effec-
tive upper limit of each time interval.

5 each resource is now able to make a final bid (fea-
sible in its own agenda and respecting the con-
straints) to the task holon. If there are alternative
resources a bid is made for every combination.

6 after receiving all ther bids from the resource
holons, the task holon will analyze them and de-
cide on the combination of resources and time in-
tervals to use (this selection is based on heuristics,
e.g., greatest slack, and the total cost of the solu-
tion). The task holon will then inform the resource
holons with a contract or cancel message.

Since multiple tasks can be negotiated at the same
time, conflicts may arise if some resources are used in
the same time interval for different tasks. To overcome
this problem there is a pre-negotiation step in the pro-
tocol where each task holon will ask for authorization
from the scheduling holon, which maintains a list of
negotiating resources and respective time windows.
Only in case of non-overlapping a “green light” will be
given to the negotiation.
Each negotiation uses the set of holons that are present
and available at that time. The runing agents are all
registered in a special agent that acts as a Directory
Service. Before entering a negotiation, a task agent
must query the directory service for running resource
agents.

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp130-135)

Product Database

System
Description

Holon
script

Holon
script

Configuration Designer

Product Builder

Control Panel

Deploy

Resource holon

Task holon

Task Launcher

Resource holon

Resource holon

Holon
script

Figure 1 - Fabricare prototype

2.3 The existing prototype
Figure 1 presents the Fabricare prototype suite for
scheduling of manufacturing orders, composed of sev-
eral applications.
The Configuration Designer allows specifying the
resource agents in the factory plant, and to some ex-
tent, represent graphically the physical layout of the
resources. The system description is read by the De-
ployment tool, which launches Resource Holons on the
desired machines. Each resource holon is composed of
a common kernel and a specific script (both written in
Prolog) that comprise the holon’s ‘mental’ state (e.g.,
name, resource’s agenda).
The Control Panel is the interface to the system’s op-
eration, monitoring and controlling running holons.
This tool also allows the user to launch tasks (manufac-
turing orders) in the system by evoking the Task
Launcher tool, which prompts the user for data about
the order and dynamically creates a Task Holon for that
order. One last tool in the suite is the Product Builder,
which allows to generate graphically a product’s proc-
ess plan. The several operations in the plan are the
abilities of the physical resources (modelled in the
resource holons).

3 The New Prototype system
3.1 General structure
We are currently migrating the Fabricare system to a
new platform (Microsoft .Net 2.0) and using the Mi-
crosoft Message Queuing (MSMQ) component of the

windows operating system for asynchronous communi-
cations. The main rationale for this migration is the use
of a mainstream development environment instead of
Prolog and Linda. Furthermore, the current version of
the system uses synchronous communications which
involved some tricks and timer based pooling of mes-
sages, as well as a single centralized message board
(tuple space) for all the messages exchanged in the
system.
The new implementation offers a more natural way to
develop each agent, since each agent owns its own
queue (which may be distributed) and the message
handling is now done in a event driven way, allowing
the agent’s main thread to execute other operations and
be interrupted only when a new message arrives.
We have divided the system in seven major projects
(Figure 2):
• Agents – contains the agent’s object model and

interfaces for all the agents in the system (i.e.,
Task, Resource, Directory Service, Process Plan-
ning and Scheduling)

• AgentsImplementation – contains the implementa-
tion of each service defined in an agent interface.
These implementations are independent of the
communication mechanism.

• Messages – contains the message’s data structures.
• MessageHandling – contains auxiliary classes for

building and translating message contracts to agent
contracts and vice-versa.

• Communications – contains generic interfaces for
abstracting the communication mechanism and al-

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp130-135)

lowing for the independent evolution/substitution
of the agent’s implementation and communication
mechanism.

• Communications.Messaging – a concrete imple-
mentation of a communication mechanism. In this
case using the MSMQ component of the windows
operation system.

Figure 2 – implemented projects

3.2 Messages
We have defined a well know contract in the form on
C# interfaces for each agent. In fact there are two con-
tracts for each agent. What we call the message con-
tract and the agent contract. Message contracts are
used for the exchange of messages using the MSMQ
component as XML data structures. Internally how-
ever, the agent uses a rich object model that is different
from the message plain structures.
For example, the message contract for registering an
agent in the directory service is as follows:

public struct RegisterRequest {

public ID AgentID;
public Location Where;
public ID[] Capabilities;

}

public struct RegisterResponse {

public bool Suceeded;
}

The agent interface for this operation is:

bool Register(ID sender, Location loc,

IList<ID> capabilities);

The ID class referred in the message contract is differ-
ent from the ID class referred in the agent contract. In
the case of the message contract it is a simple data
structure with public fields while in the case of the
agent contract it is a true object-oriented class with rich
functionality.

3.3 Message handling
As a goal, it was decided upfront that the system
should be flexible to accommodate different communi-
cation mechanisms (or at least allow for a easy substa-
tion of the underlying communication mechanism). For
the moment, we decided to use the MSMQ component
of the windows operating system as it provides an
asynchronous and reliable way for transmitting mes-
sages. The choice of using messaging instead of remot-
ing was due (1) to the ease of use for asynchronous
operation and (2) to the fact that the future Windows
Communication Foundation subsystem of the .Net
Framework will be based on the messaging paradigm
(which makes messaging a more secure bet for future
evolutions).
We factored out the functionality for low level MSMQ
interaction and the actual message processing in the
MessageHandling project. A set of classes called
message processors is defined responsible for the trans-
lation of the message contract and agent contract and
the routing of the message request to the actual object
implementing the agent algorithm. These message
processor objects are created by the MSMQ Service
objects (e.g., ResourceHolonService). This al-
lows for a reuse of this message processing functional-
ity independent of the actual communication mecha-
nism in use.
Each message processor implements the following
interface:

public interface IMessageProcessor {
 Type[] GetRequestBodyTypes();
 bool ProcessMessage(object inBody,
 ref object outBody);
}

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp130-135)

A typical implementation looks like this:

public bool ProcessMessage(object inBody,

ref object outBody)
{
MessageToAgentModelTranslator tr =

new MessageToAgentModelTranslator();

if (inBody is RegisterRequest)
{

RegisterRequest req =
 (RegisterRequest)inBody;

bool ret = impl.Register(
 tr.Translate(req.AgentID),
 tr.Translate(req.Where),
 tr.Translate(req.Capabilities)
);

DirServiceResponseMessageBuilder builder =
 new DirServiceResponseMessageBuilder();
RegisterResponse resp =
 builder.CreateRegisterResponse(ret);

outBody = resp;
return true;

}
else if (inBody is CanDoRequest)
 ...
...
else
 return false;
}

Since a resource holon is in fact a specialization of an
agent and a specialization of an holon, several message
processors can be combined for handling each of the
recognized set of messages an agent/holon can answer.
The combination of these message processors follows
the Chain of Responsibility pattern [2].

3.4 Communications
In order to decouple the implementation of the agent’s
service and the communication mechanism, there are
two special interfaces in the Communications pro-
ject, IAttachableToCommunicationsLayer
and IMessageSender

public interface IAttachableToCommLayer
{
 void AttachToCommunicationsLayer(

IMessageSender gtw,
Agents.Location loc);

}

public interface IMessageSender
{
 void SendMessage(ID destination,
 object messageBody);
 void SendMessage(IList<ID> destinations,
 object messageBody);
 object SendAndReceive(ID destination,
 object messageBody,
 Type[] expectedRespTypes);
}

Each agent implementation derives from a base class
that implements the IAttachableToCommunica-

tionsLayer interface. This interface allows the
agent to receive an object that acts a message gateway
that the agent uses to send messages to other agents.
The objects implementing IMessageSender are
created by the specific implementation of the commu-
nication mechanism being used; in this case MSMQ.
For example, to create a resource holon, one must cre-
ate an object of type ResourceHolonService
declared in the Communications.Messaging
project. This object will read a configuration file, cre-
ate a ResourceHolon object (the object responsible
for the implementation of the resource holon algorithm
declared in the AgentsImplementation project),
create a specific message queue for that agent, attach
the ResourceHolon object to the queue object, and
start listening for messages.
The code for handling MSMQ is derived from the
sample code available in [3]. We have extended the
provided code with the ability to handle more than one
type of message for each message queue. we also in-
troduced a new class ServiceLocatorMessage-
SenderGateway that is used to send messages to a
specific agent by querying the directory service to ob-
tain the agent’s queue address.
Whenever a message arrives at a MSMQ queue, the
following code is executed (in the base MQService
class):

protected virtual void OnMessage(Message inMsg)
{
inMsg.Formatter = GetFormatter();
object inBody = GetTypedMessageBody(inMsg);

if (inBody != null) {
 bool tratada = false;
 object outBody = null;
 foreach (IMessageProcessor p in procs)
 {
 if(p.ProcessMessage(inBody, ref outBody))
 {
 if (outBody != null)
 SendReply(outBody, inMsg);
 break;
 }
 }
}
}

This code will call the registered message processors
until it finds a suitable one.

3.5 Implemented holons
The current version of the system has complete kernel
functionality of the following holons:
• Directory service
• Process planning
• Scheduling holon
• Task holon

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp130-135)

• Resource holon
For the time being, only a console user interface is
available for each of these holons. The development of
a new graphical user interface or the adaptation of the
existing GUI applications to call the new kernel is still
being considered. We think the later approach will
provably be taken since the GUI is not the main focus
of our work.

4 Summary
In this paper we addressed the ability to build and
maintain computer-supported manufacturing systems
able to cope with recent (and expected future) require-
ments. The Fabricare system resembles the distributed
nature of manufacturing, thus allowing for a natural
modelling of the real system. The Fabricare system
combines resource-based holons with task-based
holons, offering an easy way to access task activities
that are supported in task-based holons as well as high
adaptability to the dynamic nature of resource condi-
tions and availability.
The presented negotiation protocol to regulate the in-
teraction among the several agents in the system, the
Contract Net with Constraint Propagation Protocol, has
as a main characteristic the explicit cooperation phase
between service providers (i.e. resources) motivated by
the need to coordinate temporal relations of task’s op-
erations. The protocol also allows for dynamic partici-
pants, using the information of running agents stored in
the directory service; and conflicts are avoided by seri-
alizing overlapping negotiation (concurrent time-
windows for different resources/tasks).
The present migration of the existing prototype con-
sists only of console applications (however, a migra-
tion of the original GUI applications done in VB 6.0 to
VB.net was already made). We have developed the
core holons of the system: directory service, process
planning, scheduling holon, Task and resource holons.
The use of a mainstream programming environment
makes it easy for undergrad students to enter the pro-
ject and contribute with evolutions as part of their final
course project/thesis.
One point of action for future work is the development
of a GUI for each holon (or the adaptation of the exist-
ing GUI to call the new agent kernel).

Acknowledgments
The authors would like to acknowledge FCT, FEDER,
POCTI, POSI, POCI and POSC for their support to
R&D Projects and GECAD Unit.

References
[1] CVM, 1999, Visionary Manufacturing Challenges

for 2020. (Washington: National Academic Press.)
[2] Gamma, E., Helm, R., Johnson, R. and Vissides, J.

(1995) Design patterns : elements of reusable ob-
ject-oriented software. Addison-Wesley

[3] Hophe, G. And Woolf, B. (2005) Enterprise
Integration Patterns : Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley

[4] Koestler, A., 1967, The Ghost in the Machine.
Hutchinson & Co: London.

[5] Kouiss, K.; pierreval, H. and mebarki, N., 1997,
“Using Multi-Agent Architecture in FMS for Dy-
namic Scheduling”. Journal of Intelligent Manu-
facturing, vol. 8, pp.41-47. Chapman & Hall.

[6] NGM, 1997, Next Generation Manufacturing – A
Framework for Action. Next Generation Project
Report, Agility Forum.

[7] Parunak, H., 1998, “What Can Agents Do in In-
dustry and Why?”. Proc. of the Second Interna-
tional Conference on Co-operative Information
Agents. Paris, France. 3-8 July 1998.

[8] Smith, R., 1980, “The Contract Net Protocol”.
IEEE Transactions on Computers, vol. C-29(12).

[9] Solberg, J., and Kashyap, R., 1993, ERC Research
in Intelligent Manufacturing Systems, Proceedings
of the IEEE, 81(1), pp.25-41.

[10] Sousa, P., Ramos, C., and Neves, J., 2003, “The
Fabricare Scheduling Prototype Suite: Agent inter-
action and knowledge base”. Journal of Intelligent
Manufacturing, 14(5), pp.441-455. October 2003.
Kluwer Academic Publishers.

[11] Sousa, P., Ramos, C., and Neves, J., 2004, “The
Fabricare System”. Production Planning & Con-
trol, 15(2), pp.156-165. Taylor & Francis.

[12] Sousa, P., Silva, N., Heikkila, T., Kallingbaum,
M., and Valcknears, P., 2000, Aspects of Co-
operation in Distributed Manufacturing Systems,
Studies in Informatics and Control Journal, 9(2),
pp.89-110.

[13] Van brussel, H.; wyns, J.; valckenaers, P.; bon-
gaerts, L.; and peeters, P., 1998, “Reference Archi-
tecture for Holonic Manufacturing Systems:
PROSA”. Computers in Industry, vol. 31(3),
pp.255-276. 1998. Elsevier Science B.V.

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp130-135)

