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Abstract: Physical interpretation of polarization-encoded images is not obvious since the information content is 
intricately combined in the channels of this imaging modality. Thus, the need for a proper tool that allows the analysis 
and understanding of polarization-encoded images is of prime interest. In this paper, a novel mapping is proposed 
between the Poincaré space and a parametric color space where an adequate distance is defined and used in the fuzzy 
C-means clustering algorithm for classification issues. Moreover, the obtained label map is used as a priori information 
to provide an ad hoc colour display, which allows a proper interpretation of the resulting colored image at a glance. 
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1   Introduction 
Polarization imaging consists of the distributed 
measurements of polarization parameters of light across 
a scene [1], [2]. That way, one defines the "Stokes 
imaging" as the bidimensional measurements of light's 
Stokes parameters impinging on the CCD camera. Four-
component information is attached to each pixel in the 
Stokes image [3], which gives its multidimensional 
structure.  Stokes channels provide a rich set of physical 
information about the local nature of the target, which 
make interpretation of such multidimensional structures 
hard to grasp at once. In this paper we address the 
problem of analyzing polarization-encoded images and 
explore the potential of this information for classification 
issues. A straightforward mapping is addressed between 
the Stokes space and a parametric color space with an 
adequate distance defined and used in the fuzzy C-means 
clustering algorithm for image segmentation [4], [5], [6]. 
The segmentation map is considered as a pre-processing 
of the image, allowing afterward the interpretation of the 
distribution of the physical information carried by the 
Stokes image. Lab ( L : luminance, a (green to red), 
b (yellow to blue)) [7] color space is chosen , because 
equivalent to the Stokes parameter system, and more 
suited for describing in colors in terms that are practical 

for a better analysis. Histogram equalization is applied 
also to each class of the channel associated to the 
luminance axis in order to preserve the information in 
the intra-class smooth variations. The proposed 
algorithm is applied and validated with Stokes images of 
a histological section of biological tissues  
This paper is organized as follows: 
In the second section, a brief definition of Stokes 
imaging is given. One defines also the Lab color model, 
and its mathematical representation. We carry-on in the 
third section, by the mapping formula between the 
Stokes system and the Lab color space, and the spherical 
representations of these two spaces are introduced. The 
segmentation method of the Lab image is also derived in 
this section, with the adequate distance used instead of 
the classical Fuzzy C-means distance. In the fourth 
section, the color algorithm used in order to interpret the 
multidimensional physical Stokes channels using a 
single color image is derived.  
 
  

2 Background 
In this section, one presents briefly the definition of the 
Stokes imaging and Lab color model used in this paper. 
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2.1 Stokes imaging 
The design of imaging systems, that can measure the 
polarization state of the outcoming light across a scene, 
is mainly based on the ability to build effective 
Polarization State Analyzers (PSA) in front of the 
camera that permit to acquire the Stokes vectors 
corresponding to each pixel in the image [3]. It can be 
shown that four intensity measurements are needed in 
order to obtain the Stokes image. The reader is referred 
to [3] for more details. 
The general polarization state of a light wave can be 
described by the so-called “Stokes vector” (SV) S  which 
fully characterizes the time-averaged polarization 
properties of radiation. It is defined by the following 

combination of complex-valued components xE  and 

y
E  of the electric vector [8] in two mutually orthogonal 

directions x  and y  as 
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where  0S  defines the total intensity, 1S  describes the 
excess of parallel to perpendicularly polarized light, and 

2S , 3S convey the nature and handedness, respectively, 
of the wave. It is straightforward to show that  
 

2 2 2 2
0 1 2 3S S S S≥ + +                  (2) 

where the equality holds for completely polarized 
radiations.  
 

(1) (2) 

(3) (4) 
Figure.1 – S0 (1), S1 (2), S2 (3), and S3 (4) images of a 
histological section of a bone coloured with red 
picosirius and imaged at 650 nm wavelength. The image 
at the upper left is to be compared with a conventional 
intensity image. 

Figures (1.1 to 1.4) represent the four Stokes channels 
images of a histological section of a bone coloured with 
red picosirius and imaged at 650 nm wavelengths. The 
image at the upper left corresponds to a conventional 
intensity image. 
It can be shown that the normalized Stokes vector S/ 0S  

has a geometrical representation. In fact it defines a 
single point that lies in a unit ball called the Poincaré 
ball [8], [9] as depicted in Figure.2. 

 

 
Figure.2 – Poincaré ball. Completely polarized light lies 
on the surface of the sphere. Partially polarized 
radiations lie inside the ball. 
 
Each Stokes vector can be represented by point on the 
unit Poincaré ball. Thus completely polarized light lie on 
the surface of the ball, whereas partially polarized light 
lie inside the ball [10]. 

 

2.2   Lab color space  
CIE L*a*b* (CIELAB) [8] is the most complete color 
model, used conventionally to describe all the colors 
visible to the human eye. The * after L , a  and b  are 
part of the full name, since they represent L *, a * and 
b *, derived from L , a  and b . 
It decouples the luminance component L  from the 
colour-carrying information or chrominance (a  and b ). 
Each colour is described according to three physiological 
criterions: 

• The a  parameter is related to the 
position between red and green 
(negative values indicate green (-a ) 
while positive values indicate red 
(+a )). 

• The b  parameter is related to the 
position between yellow and blue 
(negative values indicate blue (-b ) and 
positive values indicate yellow (+b )). 
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The parameters L  is an achromatic information and 
gives a measure of the brightness quantity in the color 
(bright to dark) ( L , 0=L yields black and 

100=L indicates white). The Lab color model has been 
created to serve as a device-independent, absolute model 
to be used as a reference. Since the Lab model is a three 
-dimensional model, that can only be represented 
properly in a three-dimensional space, it is 
mathematically represented  by a three-dimensional 
sphere. Each axis of the sphere represents one parameter 
in the Lab color as illustrated in Figure. 3. A useful 
feature of the model however is that the first parameter is 
extremely intuitive: changing its value is like changing 
the brightness setting in a TV set. 

 

 
Figure.3 – Spherical representation of the Lab colour 
space 
 
In this model, the color differences, which one perceives, 
correspond to distances when measured colorimetrically. 
The a -axis extends from green (-a ) to red (+a ) and the 
b -axis from blue (-b ) to yellow (+b ). The luminance 
L  increases from the bottom to the top of the three-
dimensional model. 

 

 

3   Image segmentation 
 

 

3.1 Poincaré ball to Lab space mapping 
In order to process coherently the physical contents of 
Stokes images, one needs to handle all the channels at 
once by the processing algorithms. This can be done by 
using an adequate mapping of the Poincaré ball to the 
Lab space and using algorithm devoted to colour image 
processing. Let us note the normalized Stokes vector as  

0 1 2 3/ 1S S S S = =  S S . We define the 

transformations that map the Poincaré ball to the 
spherical coordinates of the Lab space as the 
arrangement of the normalized Stokes parameters in the 
Lab scale, in order to have a straightforwardly 

equivalence between the unit Poincaré ball and the Lab 
representation. This transformation is done as follows: 
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where )max(a , )min(a  (resp ( )max(b , )min(b  ) are 

the values representing red and green colors (resp yellow 
and blue colors). Figure (4. L - a -b ) shows the mapping 
result of the normalized Stokes image given in Figure. 1. 
The proposed mapping can be interpreted in the 
following manner:  
Pixels luminance L  reflect the handedness of the wave 
(right- to left-handedness are represented by dark to 
bright pixels), the parameters a  and b  are the 

normalized channels 2S  and  1S  respectively in the Lab 
scale. The choice of these attributions between the 
normalized Stokes space and Lab color space is done 
with respect to the , ,X Y Z axes in the two spheres.  
This mapping is merely the injection of the Poincaré ball 
in the Lab one, in order to process the resulting color 
images using adequate algorithms.  
 

 
( L ) 

 
( a ) 

 
(b ) 

Figure.4 – Resulting Lab channels representation of the 
normalized Stokes image. L  channel, a  channel and b  
channel respectively from top to bottom. 
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3.2 Polarization-based clustering 
The reason for using a clustering process is to classify 
the pixels of an image into different sets, each set 
corresponding to a specific physical feature in the 
imaged scene. Segmentation can prove a difficult task 
when the physical properties are intricately combined in 
each pixel location [11], [12]. Then, a coherent 
processing of the vector features is needed since 
segmentation based only on scalar values in each 
channel is almost impossible. Hence a clustering 
procedure is proposed, based on a polarization analysis 
of the scene via the mapping introduced in the preceding 
section. 
Fuzzy C-means method is an efficient technique for 
segmenting multidimensional images [4], [5], and [6]. 
However, since in our case each pixel of the image 
corresponds to a point on the Lab sphere, it is thus more 
convenient to use a proper distance of a sphere. We 
define a distance between two pixels in the Lab image as 
follows: 

Let [ ]1 1 1 1, ,X l a b=  and [ ]2 2 2 2, ,X l a b=  be two pixels 

in the Lab image. We call 1 1,δ λ  and 2 2,δ λ respectively 

the latitude and longitude of 1X  and 2X  defined as: 
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for 1,2.i =  ( )x0µ  is the Heaviside function, equal to 1 

if x ≥0, 0 elsewhere. Sign(x) is equal to 1 for x positive,   
-1 for x negative and 0 for x null. Finally the distance 
between 1X  and 2X  is: 

2 21 2 1
1 2 1 2( , ) 2 arcsin sin ( ) cos( )cos( ).sin ( )

2
d X X R 2δ −δ λ −λ= + δ δ

2
   (5) 

 
where R is the radius of the Lab sphere. This distance is 
the classical distance defined between two points on a 
sphere. Consequently, the Lab image can be clustered 
into k  classes by using a fuzzy C-means algorithm after 
substituting its classical Euclidian distance by the 
distance defined in equation (5). Figure (5) shows the 4-
classes label map obtained by using the clustering 
procedure introduced in this paper. 
 

 
 
Figure.5 – Label map obtained with our clustering for 4 
classes. 
 
3.3 Color preview algorithm 
Brightness variations inside each class are not well 
displayed in the L -channel image (Figure 4. L ) since it 
reflects the variations over the whole image. 
Here one employs a technique that uses the segmentation 
map obtained by the above-mentioned algorithm as an a 
priori information in order to allow, at best, a 
distribution of the information in the color space. This is 
done in the following way: 
Once the label maps are obtained from the above 
mentioned algorithm, different masks corresponding to 

each class ( )kC  can be used to extract sets of brightness 

values from the L -channel image. Histogram 
equalization is then performed over each set to 
redistribute uniformly the brightness values inside each 
class in order to reflect in the best way the intra-class 
variations. Each set in the L  channel corresponds to one 

class ( )kC in the label map.  The new brightness values 

are finally assigned to the L -channel. Figure (6) shows 
the result of the intra-class histogram equalization on the 
Brightness channel. One can see clearly the advantages 
of this processing by observing the smooth variation of 
the information content inside each physical feature 
represented by different classes as compared to the 
image in Fig. (4- L ). 
 

 
 

Figure.6 – L -channel image after histogram equalization 
corresponding to each class. 
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Finally, the three channels L , a  and b  can be used to 
generate an RGB colour image for display purposes. 
This is presented in Figure.7. The distribution of the 
colours in the resultant RGB image is a compact manner 
to represent the variation of the physical properties of the 
scene represented initially by four different channels, in 
one single image. In the resultant image each color 
corresponds to a physical information namely the 
absorption, the reflectance, the diatenuation, the 
retardance [1], [3]…etc, of the Stokes image which is 
not easily located in the above four channels.  

 
The whole processing can be summarized as follows: 
 

1. Normalization of the three last channels 
by the first one. 

2.  Poincaré ball to Lab mapping 
3. Segmentation of the Lab image using 

the algorithm of section 3.2. 
4. Equalization of the histograms 

corresponding to the pixels of each class 
in the L  channel. 

5. Replace of the old L  channel by the 
new one obtained at step 4. 

6. Lab image to the RGB image transform 
7. Display the RGB image. 

 

       
 
Figure.7– The combined result of the proposed 
clustering algorithm with our novel colour preview 
procedure. The image is for the red picosirius coloured 
histological section of a bone shown in Figure.1. 
 

4   Conclusion 
In this paper, a new method for interpreting physical 
properties of Stokes imaging was introduced. The major 
interest of this investigation comes from the 
interpretation of the physical properties of a scene using 
colors. The map of the Stocks image to Lab is a way for 

the eye to distinguish the difference of characteristics of 
the image and to synthesize maximum information in a 
color preview that permits qualitative interpretation of 
the target properties in terms of physical contents. The 
main interest of the method is the use of the 
segmentation map in order to yield a colouring scheme 
that preserves the smooth variations of the physical 
content across the scene. The method was validated on 
Stokes images of biological tissues and an illustrative 
sample is shown here in order to appreciate the interest 
of the proposed method. The derived algorithm in this 
paper will be at the base of future challenges concerning 
the attribution of each color to exactly its corresponding 
physical property. 
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