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Abstract: - Montgomery modular multiplication is one of the most important and frequently used techniques to 
accelerate the time consuming mathematical operations used in RSA cryptosystems. In this paper, a modified 
Montgomery modular multiplication algorithm is presented where the carry-save operations are split into two 
cycles so as to eliminate the generation of the data-dependent control signal from dominating the critical path. 
Two novel systolic Montgomery multipliers are designed based on the proposed algorithm. A bit-parallel 
pipelined architecture followed by a one dimensional variant are implemented on FPGA and evaluated against 
recently reported Montgomery multipliers implemented on the same platform. Improved results have been 
demonstrated in terms of area and throughput. 
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1   Introduction 
 
Public key cryptosystems (PKCs) are increasingly 
replacing the symmetric key cryptosystems owing to 
its ease of key management [1]. However, the 
strength of all public key cryptosystems like RSA, 
Elliptic Curve Cryptosystem (ECC) etc. depends on 
the mathematical complexity of the encryption and 
decryption algorithms [1]. 
 

RSA cryptosystem is one of the most prevailing 
and trusted PKC that is currently being used in many 
security protocols. Encryption and decryption in 
RSA algorithm are based primarily on two 
computationally intensive operations – modular 
exponentiation and modular multiplication [1]. For 
example if Alice wants to send a message M to Bob, 
Alice uses the public key C (listed in a public 
database) of Bob to encrypt her message to give the 
ciphertext M’ using M’ = MC mod N. The prime 
modulus N is also listed in the public database which 
is related mathematically to the public key C and the 
private key D of Bob. Decryption is an inverse 
process of encryption. Bob can retrieve the original 
message M by using M = M’D mod N. Thus, the 
main operation that is being performed in the both 
encryption and decryption is modular exponentiation 
which can be further decomposed to repeated 
modular squaring and modular multiplication [2].  

 

Modular multiplication is the key operation 
which limits the functioning of the RSA 
cryptoengine. Modular multiplication is defined by 
P = A B mod N. Modular multiplication is in itself a 
complex mathematical operation involving trial 
divisions. In the context of cryptosystems like RSA, 
where security and accuracy is a major concern, the 
inputs have wordlengths ranging from 128 bits to 
1024 bits. Therefore, there is a need to curtail the 
increased hardware complexity associated with 
unusually long arithmetic operator to control the 
power, delay and cost of hardware implementation 
to within a reasonable bound.  

 
Montgomery modular multiplication (MMM) is one 
of the most frequently used modular multiplication 
algorithms in RSA cryptosystems that replaces trial 
divisions with shifts and adds [3]. MMM algorithm 
has been studied extensively and several hardware 
and software implementations of MMM have been 
reported [2]-[9]. Pseudocodes of different 
Montgomery multiplication schemes have been 
comprehensively compared in [4]. Systolic hardware 
implementations of MMM are reported in [5]-[9]. 
Architectures in [5] and [6] are implemented using 
carry-save adders but architectures in [7]-[9] employ 
carry-propagate adders. Thus MMM 
implementations in [5] and [6] are faster as 
compared to architectures in [7]-[9]. Moreover, 
algorithms in [4], [7] and [8] implement MMM in its 
original form. However, recently reported modified 
MMM algorithms [5], [6] and [9] involve 
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precomputation of the sum of one of the 
multiplicands (A or B) and the modulus (N).  

Since modular multiplication is an operation used 
repetitively to accomplish modular exponentiation in 
RSA, pipelinable modular multiplier is desirable for 
cryptographic application and it shall be designed 
with as high throughput rate as possible. For 
iterative multiplications, the desideratum is the 
maximum achievable clock speed rather than the 
number of clock cycles taken to complete a single 
multiplication. In this paper, we propose an 
algorithm – MMM_MX that is based on carry-save 
representation, without any precomputation for 
pipelined multiplier design. More number of clock 
cycles is used to complete the multiplication but the 
throughput rate has increased due to the shorter 
critical path. Therefore, the proposed algorithm 
leads to a faster execution of modular 
exponentiation for RSA at higher clock frequency 
without compromising the total latency. Moreover, 
since there is no precomputation, the buffer 
overhead, that is required to store the precomputed 
result, is avoided. A novel pipelined systolic 
Montgomery modular multiplier is implemented 
based on the proposed algorithm. The proposed 
architecture is rapid prototyped using the standard 
FPGA design flow and is compared against 
implementation results of other architectures 
recently reported in [5]-[8] for the critical path 
delay, throughput and utilization of FPGA 
resources. A variant of the proposed systolic 
multiplier is also derived with better area efficiency 
at the cost of lower throughput. 

The rest of the paper is organized as follows. In 
Section 2, we describe existing MMM algorithms. 
The problem statement is defined in Section 3 and 
the issues associated with current systolic 
architectures for MMM are discussed. A modified 
MMM_MX algorithm is proposed in Section 4. 
Section 5 introduces the systolic architecture and its 
variant derived from the proposed algorithm. The 
FPGA implementation results are reported in 
Section 6 followed by the conclusion in Section 7. 
 
 
2 Preliminaries 
 
In this section we introduce existing MMM 
algorithms. MMM_CS is MMM implemented in 
carry-save representation and MMM_OP involves 
precomputation [5], [6], [9]. We present some 
notations that are used in the rest of the paper. For 
consistency, a binary variable name is written in 
lower case letters. A vector of binary variables is 

represented with variable name that begins with 
upper case letter. A binary variable, x at the i-th row 
and the j-th column in a systolic array is denoted by 
xj

i. 
The input to output mapping of MMM is given 

by 

NABRNBAMMM mod),,( 1−=  (1) 
where R and N are relatively prime. If N is odd, as is 
the case in RSA, R can be the even number 2k , k 
being the length of the cryptographic key. The 
original algorithm in [3] involves a subtraction at the 
end which can be eliminated [5], [6]. Let 
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where , then, MMM_CS in carry-
save representation without the final subtraction is 
described by Algorithm 1 [6]. 
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Algorithm 1: MMM_CS(A,B,N) 
 1: Cin2 ← 0, Cin1 ← 0, Sin ← 0 
 2: for i = 0 to k-1 do 
 3:   q ← (Sin0 + Cin10 + Cin20 + aib0) mod 2 
 4:   Cin2 + Cin1 + Sin← Cin2+ Cin1 + Sin + aiB + qN
 5:   Cin2 ← Cin2/2, Cin1 ← Cin1/2, Sin ← Sin/2 
 6: end for 
 7: return Cin2, Cin1, Sin 

 
Algorithm 2: MMM_OP(A,B,N) 
 1:  Cin ← 0,  Sin ← 0 
 2:  for i = 0 to k-1 do 
 3:    q ← (Sin0 + Cin10 +  aib0) mod 2 
 4:   switch (ai, q) 
 5:     case(0,0) :            I ← 0 
 6:     case(0,1) :            I ← N 
 7:     case(1,0) :            I ← B 
 8:     case(1,1) :            I← B+N 
 9:   end switch 
10:   Cin + Sin ← Cin + Sin + I 
11:   Cin ← Cin/2, Sin ← Sin/2 
12: end for 
13: Return Cin, Sin 

 
In Algorithm 1 – MMM_CS, besides the sum 

signal – Sin, two carry signals – Cin1 and Cin2, are 
generated to compute the vector additions carry-save 
representation. Also, an additional stage of adders is 
required to add Cin2, Cin1 and Sin in MMM_CS. A 
further modification to MMM_CS is proposed in 
[5], [6] and [9], where the sum – B+N (in Step 4 
of MMM_CS) is precomputed. In this step, ai and q 
are used to select either B or N or B+N or 0. So, 
B+N should be precomputed and stored in a buffer. 
A 4-to-1 multiplexer is employed to select one of 
these four possible values. Algorithm 2 – MMM_OP 
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shows the pseudo code that involves this 
precomputation. 

The selective assignment clauses in Steps 4 
to 9 of Algorithm 2 are implemented using a 4-to-
1 multiplexer with select signals – ai and q. The 
output I from the multiplexer is then added to sum 
and carry (from previous iteration). 
 
 
3 Problem Statement 
 
Let us revisit Algorithms 1 and 2. The main problem 
in both these algorithms is their dependency on the 
intermediate signal q. In each iteration, q is 
computed using the LSB of sum, carry and input B 
(Step 3 in MMM_CS and MMM_OP).  In 
MMM_CS, q is then used to determine carry and 
sum signals in Step 4. Similarly, in MMM_OP, q 
is used to select I in Steps 4 to 10 which is later 
used for the computation of carry and sum in Step 
10. In the systolic array, the basic cell at the least 
significant position computes q which is propagated 
to the remaining rows of basic cells. The maximum 
operating frequency of the architecture is limited by 
the critical path as a consequence of this dependency 
on q. MMM_OP also suffers from long critical path 
due to q. Moreover, it involves buffering of the 
precomputed result, B+N. This step will take up 
additional clock cycles between successive modular 
multiplication operations and hence the throughput 
is affected while performing exponentiation.  

In the next section, we propose a modified 
Montgomery modular multiplication algorithm – 
MMM_MX, that resolves the dependency on q by 
introducing an additional clock cycle. Breaking the 
dependency facilitates hardware reuse. Besides, no 
precomputation is necessary in the proposed 
architecture. Therefore, the extra clock cycles 
needed between successive multiplications in 
Algorithm 2 have been eliminated. In addition, the 
number of carry vectors will be reduced from two 
(in MMM_CS) to one in the proposed algorithm. 

 
 

4 Proposed Modified MMM 
 
We now derive the modified Montgomery modular 
multiplication algorithm - MMM_MX. If we 
consider Steps 3, 4 and 5 in Algorithm 1, they 
can be rewritten as: 

Step 3a: Ct + St ← Cin + Sin + aiB 
Step 3b: q ← St0

Step 4 : C + S ← Ct + St + qN 

Step 5 : Cin ←  C/2,  Sin ←  S/2 

In Step 3a, the summation of carry, Cin and sum, 
Sin from previous iteration and the input, aiB, results 
in the intermediate carry and sum signals – Ct and 
St, respectively. From Algorithm 1, the least 
significant bit of the sum generated in Step 3a is 
q. With the value of q in hand, the carry and sum for 
the current iteration in Step 4 are calculated and  
then right shifted in Step 5. From the above steps, 
we notice the following. 

(a) If we introduce a register between Step 3 
and 4, q can be simply obtained from the least 
significant bit of the intermediate sum, and then 
used for the calculation of the sum, S and carry, C in 
the next cycle.  

(b) Moreover, Steps 3a & 4 perform the 
same operation ‘addition’, but with different 
operands. Thus the adder that computes Ct and St in 
Step 3a can be reused to compute C and S in 
Step 4. Thus a simple 2-to-1 multiplexing of 
inputs to the adder will enable the same adder to be 
used in both cycles – Steps 3a & 4. 

Algorithm 3: MMM_MX(A,B,N) 
 1:  Cin ← 0, Sin ← 0, Ct ← 0, St ← 0, ctrl ← 0, q← 0 
 2:  for i = 0 to k-1 do 
 3:    for ctrl  = 0 to 1 do 
 4:      for j = 0 to k-1 do    
 5:        if ctrl = 0 then  
              in1 ← ak; in2 ← bj; in3 ← sinj; in4 ← cinj
 6:        else 
              in1 ← q; in2 ← nj; in3 ← stj; in4 ← ctj 
 7:        end if; 
 8:        carry + sum ← GFA(in1, in2, in3, in4) 
 9:      end for 
10:     Ct ← Carry; St ← Sum 
11:     q ← St0
12:   end for 
13:   Cin ← Ct/2; Sin ← St/2 
14: end for 
15: Return Cin, Sin 

 
The above observations result in a different  

Montgomery modular multiplication algorithm – 
MMM_MX as shown in Algorithm 3. The proposed 
algorithm has two for loops (with i and j as 
counters) that indicate the bit-level scanning of 
inputs which are present in MMM_CS and 
MMM_OP. MMM_MX has one extra loop (with 
loop counter ctrl). This additional loop implements 
the control signal that multiplexes correct inputs to 
the adder that is reused in Steps 3a and 4. In 
Algorithm 3, the inputs to the multiplexer – in1, in2, 
in3 and in4, are selected by ctrl in Steps 5 to 7. 
These inputs are then added using a gated full adder 
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(GFA) in Step 8 that produces the logical sum and 
carry of the expression in1.in2 + in3 + in4 
depending the inputs selected by cntrl. When ctrl = 
‘0’, the intermediate carry and sum, Ct and St, are 
computed from the inputs, ak and B, and the sum and 
carry, Sin and Cin, from the previous iteration.. At 
the end of the first clock cycle, we obtain q = St0. In 
the next clock cycle, when ctrl = ‘1’ the full adder is 
now used to compute Cin and Sin for the current 
iteration by using q, N and the intermediate sum and 
carry, St and Ct. The control signal then turns back 
to 0 and the process continues until all operand bits 
have been exhausted. 

 
 
5 Architectures 
 
The systolic architecture corresponding to 
conventional carry-save implementation described 
by Algorithm 1 is shown in [6] and those based on 
the precomputation of B+N, are implemented in [5], 
[6] and [9]. This section describes the algorithm to 
architecture translation of the proposed MMM_MX 
algorithm. The basic cell or computing element that 
is used in the systolic array is shown in Fig. 1. 

 
Fig. 1. Basic cell or computation unit 

It has four single bit 2-to-1 multiplexers. The 
control signal selects between the two groups of 
four input signals (shown in Algorithm 3) to the 
gated full adder (GFA). The two dimensional 
systolic architecture ‘Design 1’ of MMM_MX is 
shown in Fig. 2. It comprises k2 replicas of the basic 
cell in a 2-D array. The outputs of all basic cells are 
registered using flip-flops denoted by • in Fig. 2. 
The sum output of basic cell from the i-th row and 
the j-th column, sumj

i, is connected to stj
i and 

sinj−1
i+1. Similarly the carry output from the basic 

cell, carryj
i is connected to ctj+1

i and cinj
i+1. Fig. 3(a) 

illustrates this assignment of Sum and Carry signals 
to the GFA at the i-th row. The notation used in Fig. 
3(a) follows the convention introduced in Section 2. 
In the m-th clock cycle, when cntrl = 0, the right 
shifted Sum and Carry signals from the (i−1)-th 
row, i.e., sinj+1

i−1 and cinj
i−1 are multiplexed into the 

GFA (Step 5 in Algorithm 3). According to Step 
6 in Algorithm 3, in the next clock cycle, the inputs 

of GFA should be assigned to the sum and carry 
signals that were generated by the i-th row of basic 
cells. Therefore, in the (m+1)-th cycle, Sum and 
Carry signals, stj

i and ctj+1
i  of basic cells in the 

same row are selected by the control signal that has 
just been toggled (Step 6 in Algorithm 6). Fig. 
3(a) illustrates the subscripts of Sum and Carry in 
the m-th and (m+1)-th clock cycle. The Sum and 
Carry that are generated by (i-1)-th row in (m – 1)-
th cycle are right shifted to be assigned to the i-th 
row in m-th clock cycle. The subscripts of Sum and 
Carry resulting from the i-th row of basic cells in 
the (m+1)-th cycle retain, indicating that they have 
not been right shifted.   

 
The reservation table in Fig. 3(b) shows the 

filling of pipeline. Thus, although the total time 
taken to generate the first Sin and Cin outputs is 2k 
clock cycles, the throughput for subsequent results 
after the first product has been output is merely two 
clock cycles. 

 
A variant of the 2-D systolic architecture – ‘Design 
2’ is shown in Fig. 4. This implementation involves 
only one row of basic cells. Input ai is sent serially 
in alternate clock cycles into this row of basic cells. 
Inputs B and N are applied in a parallel fashion. 
Since each ai takes 2 clock cycles, Design 2 would 
require 2k clock cycles to compute one Montgomery 
multiplication result. The chip area however, is 
reduced substantially at the expense of lower 
throughput.  
 
6 Results 
 
MMM_MX ‘Design 1’ and ‘Design 2’ are evaluated 
against recently reported Montgomery modular 
multipliers in [5-8] for maximum clocking 
frequency, throughput and area (in terms of logic 
slices of targeted FPGA). For applications that 
would benefit from a pipelined architecture, 
throughput is a more important measurement for 
performance than the latency required for a single 
multiplication. A recent paper [5] by Fournaris et al. 
compares some the latest reported Montgomery 
modular multiplier architectures with their proposed 
one-dimensional precomputation based architecture. 
We compare the implementation of our architectures 
against the results reported by Fournaris et al. in [5]. 
The comparisons are based on FPGA 
implementation. The proposed designs are 
implemented on Xilinx Virtex 2 chip and 
synthesized using Xilinx Synthesis Tool (XST). 
Design 1 and Design 2 are compared against 
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different kinds of architectures, with and without 
precomputation of B+N, carry-save/normal 
representations and FPGA specific implementations, 
reported in [5]-[8]. The MMM architectures in [5], 
[7] and [8] are one-dimensional arrays whereas 
those in [6] are two-dimensional systolic 
architectures. [5] and [6] employ carry-save 
representation but [7] and [8] are based on carry-
propagate adders. Unlike the ‘Conventional’ 
architecture in [6], the ‘Optimized’ architecture in 
[6] is a two-dimensional systolic array that is based 
on the precomputation of B+N. The more recent 

architecture in [5] is a one-dimensional variant of 
‘Optimized’ architecture in [6].  

In Table I, the FPGA implementation results of 
the proposed 1-D architecture – Design 2, are 
compared against the 1-D architectures in [5], [7] 
and [8]. We see from Table I that the proposed 
Design 2 is faster than the recently reported 
‘Optimized’ [5] by 3 times. The throughput of the 
proposed architecture is 1.5 times that of 
‘Optimized’ in [5]. Thus, even though the proposed 
architecture takes one extra clock cycle in every 
iteration to compute the Montgomery product, due 
to its shorter critical path, it is still faster than all the 

 
Fig. 2. Two-dimensional systolic architecture of Design 1 

 
Fig. 3. (a) Indices of Sum S and Carry C of i-th row of basic cells in the m-th and (m+1)-th clock cycle (b) Reservation 

table of the pipeline of the 2-D architecture 
 

 
Fig. 4. One-dimensional systolic architecture of Design 2 
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one-dimensional architectures shown in Table I. As 
a result of this, the total latency is reduced and the 
reduction in the total latency is prominent when it is 
used for modular exponentiation, where the 
operands are multiplied repetitively. Moreover, the 
number of slices is also the least in comparison with 
all the listed architectures. 
 The two-dimensional systolic architectures were 
implemented for a bit-length of 128. FPGA 
implementation results of the proposed 2-D 
architecture – Design 1, are compared against the 
two-dimensional ‘Optimized’ and ‘Conventional’ 
architectures (from [6]) in Table II. In 2-D 
architectures, the proposed multiplier also 
outperforms its counterparts in both aspects. 

 
TABLE I. FPGA IMPLEMENTATION RESULTS OF 1024-BIT 

ONE-DIMENSIONAL MONTGOMERY MODULAR 
MULTIPLIERS 

Architecture Chip Area 
(slices) 

Clock 
Frequency 
(MHz) 

Throughput 
(bit/sec) 

Design 2 2947 386.84 193.42 M 
Optimized 
[5] 

3611 129.10 129.00 M 

Daly [7] 5458  54.61  54.40 M 
Ors [8] 5706  95.62  31.83 M 

 
TABLE II. FPGA IMPLEMENTATION RESULTS OF 128-BIT 

ONE-DIMENSIONAL MONTGOMERY MODULAR 
MULTIPLIERS 

Architecture Chip Area 
(slices) 

Clock 
Frequency 
(MHz) 

Design 1 44330 358.17 
Optimized [6] 48767 168.70 
Conventional [6] 65473 156.30 

 
7   Conclusion 
 
The most important operation in RSA encryption 
and decryption is the hardware-intensive modular 
multiplication. This operation can be accomplished 
by Montgomery modular multiplication. An 
improved Montgomery multiplication – MMM_MX 
has been proposed in this paper which reduces the 
critical path by removing dependency on an 
intermediate signal. Since MMM_MX is free from 
any precomputations, modular exponentiation can 
be efficiently carried out with this operator by 
feeding back the result in line with the flow of the 
input data continuously. Two systolic carry-save 
architectures – one-dimensional bit-serial and two-
dimensional bit-parallel architectures, are discussed 
and implemented. The bit-serial architecture trades 

throughput for area. The two architectures were 
evaluated against different kinds of recently 
reported Montgomery modular implementations. 
The proposed algorithm reduces the minimum clock 
period by three times when compared with one of 
the fastest algorithms.  
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