
High Speed Systolic Montgomery Modular Multipliers
for RSA Cryptosystems

RAVI KUMAR SATZODA, CHIP-HONG CHANG and CHING-CHUEN JONG

Centre for High Performance Embedded Systems
Nanyang Technological University
3rd Storey, Research Techno Plaza

SINGAPORE

Abstract: - Montgomery modular multiplication is one of the most important and frequently used techniques to
accelerate the time consuming mathematical operations used in RSA cryptosystems. In this paper, a modified
Montgomery modular multiplication algorithm is presented where the carry-save operations are split into two
cycles so as to eliminate the generation of the data-dependent control signal from dominating the critical path.
Two novel systolic Montgomery multipliers are designed based on the proposed algorithm. A bit-parallel
pipelined architecture followed by a one dimensional variant are implemented on FPGA and evaluated against
recently reported Montgomery multipliers implemented on the same platform. Improved results have been
demonstrated in terms of area and throughput.

Key-Words:- RSA cryptosystems, modular multiplication, Montgomery multiplication, carry-save
architectures, FPGA implementation, systolic architectures

1 Introduction

Public key cryptosystems (PKCs) are increasingly
replacing the symmetric key cryptosystems owing to
its ease of key management [1]. However, the
strength of all public key cryptosystems like RSA,
Elliptic Curve Cryptosystem (ECC) etc. depends on
the mathematical complexity of the encryption and
decryption algorithms [1].

RSA cryptosystem is one of the most prevailing
and trusted PKC that is currently being used in many
security protocols. Encryption and decryption in
RSA algorithm are based primarily on two
computationally intensive operations – modular
exponentiation and modular multiplication [1]. For
example if Alice wants to send a message M to Bob,
Alice uses the public key C (listed in a public
database) of Bob to encrypt her message to give the
ciphertext M’ using M’ = MC mod N. The prime
modulus N is also listed in the public database which
is related mathematically to the public key C and the
private key D of Bob. Decryption is an inverse
process of encryption. Bob can retrieve the original
message M by using M = M’D mod N. Thus, the
main operation that is being performed in the both
encryption and decryption is modular exponentiation
which can be further decomposed to repeated
modular squaring and modular multiplication [2].

Modular multiplication is the key operation
which limits the functioning of the RSA
cryptoengine. Modular multiplication is defined by
P = A B mod N. Modular multiplication is in itself a
complex mathematical operation involving trial
divisions. In the context of cryptosystems like RSA,
where security and accuracy is a major concern, the
inputs have wordlengths ranging from 128 bits to
1024 bits. Therefore, there is a need to curtail the
increased hardware complexity associated with
unusually long arithmetic operator to control the
power, delay and cost of hardware implementation
to within a reasonable bound.

Montgomery modular multiplication (MMM) is one
of the most frequently used modular multiplication
algorithms in RSA cryptosystems that replaces trial
divisions with shifts and adds [3]. MMM algorithm
has been studied extensively and several hardware
and software implementations of MMM have been
reported [2]-[9]. Pseudocodes of different
Montgomery multiplication schemes have been
comprehensively compared in [4]. Systolic hardware
implementations of MMM are reported in [5]-[9].
Architectures in [5] and [6] are implemented using
carry-save adders but architectures in [7]-[9] employ
carry-propagate adders. Thus MMM
implementations in [5] and [6] are faster as
compared to architectures in [7]-[9]. Moreover,
algorithms in [4], [7] and [8] implement MMM in its
original form. However, recently reported modified
MMM algorithms [5], [6] and [9] involve

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp240-245)

mailto:rksatzoda,%20echchang,%20eccjong%7D@ntu.edu.sg

precomputation of the sum of one of the
multiplicands (A or B) and the modulus (N).

Since modular multiplication is an operation used
repetitively to accomplish modular exponentiation in
RSA, pipelinable modular multiplier is desirable for
cryptographic application and it shall be designed
with as high throughput rate as possible. For
iterative multiplications, the desideratum is the
maximum achievable clock speed rather than the
number of clock cycles taken to complete a single
multiplication. In this paper, we propose an
algorithm – MMM_MX that is based on carry-save
representation, without any precomputation for
pipelined multiplier design. More number of clock
cycles is used to complete the multiplication but the
throughput rate has increased due to the shorter
critical path. Therefore, the proposed algorithm
leads to a faster execution of modular
exponentiation for RSA at higher clock frequency
without compromising the total latency. Moreover,
since there is no precomputation, the buffer
overhead, that is required to store the precomputed
result, is avoided. A novel pipelined systolic
Montgomery modular multiplier is implemented
based on the proposed algorithm. The proposed
architecture is rapid prototyped using the standard
FPGA design flow and is compared against
implementation results of other architectures
recently reported in [5]-[8] for the critical path
delay, throughput and utilization of FPGA
resources. A variant of the proposed systolic
multiplier is also derived with better area efficiency
at the cost of lower throughput.

The rest of the paper is organized as follows. In
Section 2, we describe existing MMM algorithms.
The problem statement is defined in Section 3 and
the issues associated with current systolic
architectures for MMM are discussed. A modified
MMM_MX algorithm is proposed in Section 4.
Section 5 introduces the systolic architecture and its
variant derived from the proposed algorithm. The
FPGA implementation results are reported in
Section 6 followed by the conclusion in Section 7.

2 Preliminaries

In this section we introduce existing MMM
algorithms. MMM_CS is MMM implemented in
carry-save representation and MMM_OP involves
precomputation [5], [6], [9]. We present some
notations that are used in the rest of the paper. For
consistency, a binary variable name is written in
lower case letters. A vector of binary variables is

represented with variable name that begins with
upper case letter. A binary variable, x at the i-th row
and the j-th column in a systolic array is denoted by
xj

i.
The input to output mapping of MMM is given

by

NABRNBAMMM mod),,(1−= (1)
where R and N are relatively prime. If N is odd, as is
the case in RSA, R can be the even number 2k , k
being the length of the cryptographic key. The
original algorithm in [3] involves a subtraction at the
end which can be eliminated [5], [6]. Let

, and , ∑ −
=

= 1
0

2k
i

i

i
aA ∑ −

=
= 1

0
2k

i
i

i
bB ∑ −

=
= 1

0
2k

i
i

i
nN

where , then, MMM_CS in carry-
save representation without the final subtraction is
described by Algorithm 1 [6].

}1,0{,, ∈iii nba

Algorithm 1: MMM_CS(A,B,N)
 1: Cin2 ← 0, Cin1 ← 0, Sin ← 0
 2: for i = 0 to k-1 do
 3: q ← (Sin0 + Cin10 + Cin20 + aib0) mod 2
 4: Cin2 + Cin1 + Sin← Cin2+ Cin1 + Sin + aiB + qN
 5: Cin2 ← Cin2/2, Cin1 ← Cin1/2, Sin ← Sin/2
 6: end for
 7: return Cin2, Cin1, Sin

Algorithm 2: MMM_OP(A,B,N)
 1: Cin ← 0, Sin ← 0
 2: for i = 0 to k-1 do
 3: q ← (Sin0 + Cin10 + aib0) mod 2
 4: switch (ai, q)
 5: case(0,0) : I ← 0
 6: case(0,1) : I ← N
 7: case(1,0) : I ← B
 8: case(1,1) : I← B+N
 9: end switch
10: Cin + Sin ← Cin + Sin + I
11: Cin ← Cin/2, Sin ← Sin/2
12: end for
13: Return Cin, Sin

In Algorithm 1 – MMM_CS, besides the sum

signal – Sin, two carry signals – Cin1 and Cin2, are
generated to compute the vector additions carry-save
representation. Also, an additional stage of adders is
required to add Cin2, Cin1 and Sin in MMM_CS. A
further modification to MMM_CS is proposed in
[5], [6] and [9], where the sum – B+N (in Step 4
of MMM_CS) is precomputed. In this step, ai and q
are used to select either B or N or B+N or 0. So,
B+N should be precomputed and stored in a buffer.
A 4-to-1 multiplexer is employed to select one of
these four possible values. Algorithm 2 – MMM_OP

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp240-245)

shows the pseudo code that involves this
precomputation.

The selective assignment clauses in Steps 4
to 9 of Algorithm 2 are implemented using a 4-to-
1 multiplexer with select signals – ai and q. The
output I from the multiplexer is then added to sum
and carry (from previous iteration).

3 Problem Statement

Let us revisit Algorithms 1 and 2. The main problem
in both these algorithms is their dependency on the
intermediate signal q. In each iteration, q is
computed using the LSB of sum, carry and input B
(Step 3 in MMM_CS and MMM_OP). In
MMM_CS, q is then used to determine carry and
sum signals in Step 4. Similarly, in MMM_OP, q
is used to select I in Steps 4 to 10 which is later
used for the computation of carry and sum in Step
10. In the systolic array, the basic cell at the least
significant position computes q which is propagated
to the remaining rows of basic cells. The maximum
operating frequency of the architecture is limited by
the critical path as a consequence of this dependency
on q. MMM_OP also suffers from long critical path
due to q. Moreover, it involves buffering of the
precomputed result, B+N. This step will take up
additional clock cycles between successive modular
multiplication operations and hence the throughput
is affected while performing exponentiation.

In the next section, we propose a modified
Montgomery modular multiplication algorithm –
MMM_MX, that resolves the dependency on q by
introducing an additional clock cycle. Breaking the
dependency facilitates hardware reuse. Besides, no
precomputation is necessary in the proposed
architecture. Therefore, the extra clock cycles
needed between successive multiplications in
Algorithm 2 have been eliminated. In addition, the
number of carry vectors will be reduced from two
(in MMM_CS) to one in the proposed algorithm.

4 Proposed Modified MMM

We now derive the modified Montgomery modular
multiplication algorithm - MMM_MX. If we
consider Steps 3, 4 and 5 in Algorithm 1, they
can be rewritten as:

Step 3a: Ct + St ← Cin + Sin + aiB
Step 3b: q ← St0

Step 4 : C + S ← Ct + St + qN

Step 5 : Cin ← C/2, Sin ← S/2

In Step 3a, the summation of carry, Cin and sum,
Sin from previous iteration and the input, aiB, results
in the intermediate carry and sum signals – Ct and
St, respectively. From Algorithm 1, the least
significant bit of the sum generated in Step 3a is
q. With the value of q in hand, the carry and sum for
the current iteration in Step 4 are calculated and
then right shifted in Step 5. From the above steps,
we notice the following.

(a) If we introduce a register between Step 3
and 4, q can be simply obtained from the least
significant bit of the intermediate sum, and then
used for the calculation of the sum, S and carry, C in
the next cycle.

(b) Moreover, Steps 3a & 4 perform the
same operation ‘addition’, but with different
operands. Thus the adder that computes Ct and St in
Step 3a can be reused to compute C and S in
Step 4. Thus a simple 2-to-1 multiplexing of
inputs to the adder will enable the same adder to be
used in both cycles – Steps 3a & 4.

Algorithm 3: MMM_MX(A,B,N)
 1: Cin ← 0, Sin ← 0, Ct ← 0, St ← 0, ctrl ← 0, q← 0
 2: for i = 0 to k-1 do
 3: for ctrl = 0 to 1 do
 4: for j = 0 to k-1 do
 5: if ctrl = 0 then
 in1 ← ak; in2 ← bj; in3 ← sinj; in4 ← cinj
 6: else
 in1 ← q; in2 ← nj; in3 ← stj; in4 ← ctj
 7: end if;
 8: carry + sum ← GFA(in1, in2, in3, in4)
 9: end for
10: Ct ← Carry; St ← Sum
11: q ← St0
12: end for
13: Cin ← Ct/2; Sin ← St/2
14: end for
15: Return Cin, Sin

The above observations result in a different

Montgomery modular multiplication algorithm –
MMM_MX as shown in Algorithm 3. The proposed
algorithm has two for loops (with i and j as
counters) that indicate the bit-level scanning of
inputs which are present in MMM_CS and
MMM_OP. MMM_MX has one extra loop (with
loop counter ctrl). This additional loop implements
the control signal that multiplexes correct inputs to
the adder that is reused in Steps 3a and 4. In
Algorithm 3, the inputs to the multiplexer – in1, in2,
in3 and in4, are selected by ctrl in Steps 5 to 7.
These inputs are then added using a gated full adder

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp240-245)

(GFA) in Step 8 that produces the logical sum and
carry of the expression in1.in2 + in3 + in4
depending the inputs selected by cntrl. When ctrl =
‘0’, the intermediate carry and sum, Ct and St, are
computed from the inputs, ak and B, and the sum and
carry, Sin and Cin, from the previous iteration.. At
the end of the first clock cycle, we obtain q = St0. In
the next clock cycle, when ctrl = ‘1’ the full adder is
now used to compute Cin and Sin for the current
iteration by using q, N and the intermediate sum and
carry, St and Ct. The control signal then turns back
to 0 and the process continues until all operand bits
have been exhausted.

5 Architectures

The systolic architecture corresponding to
conventional carry-save implementation described
by Algorithm 1 is shown in [6] and those based on
the precomputation of B+N, are implemented in [5],
[6] and [9]. This section describes the algorithm to
architecture translation of the proposed MMM_MX
algorithm. The basic cell or computing element that
is used in the systolic array is shown in Fig. 1.

Fig. 1. Basic cell or computation unit

It has four single bit 2-to-1 multiplexers. The
control signal selects between the two groups of
four input signals (shown in Algorithm 3) to the
gated full adder (GFA). The two dimensional
systolic architecture ‘Design 1’ of MMM_MX is
shown in Fig. 2. It comprises k2 replicas of the basic
cell in a 2-D array. The outputs of all basic cells are
registered using flip-flops denoted by • in Fig. 2.
The sum output of basic cell from the i-th row and
the j-th column, sumj

i, is connected to stj
i and

sinj−1
i+1. Similarly the carry output from the basic

cell, carryj
i is connected to ctj+1

i and cinj
i+1. Fig. 3(a)

illustrates this assignment of Sum and Carry signals
to the GFA at the i-th row. The notation used in Fig.
3(a) follows the convention introduced in Section 2.
In the m-th clock cycle, when cntrl = 0, the right
shifted Sum and Carry signals from the (i−1)-th
row, i.e., sinj+1

i−1 and cinj
i−1 are multiplexed into the

GFA (Step 5 in Algorithm 3). According to Step
6 in Algorithm 3, in the next clock cycle, the inputs

of GFA should be assigned to the sum and carry
signals that were generated by the i-th row of basic
cells. Therefore, in the (m+1)-th cycle, Sum and
Carry signals, stj

i and ctj+1
i of basic cells in the

same row are selected by the control signal that has
just been toggled (Step 6 in Algorithm 6). Fig.
3(a) illustrates the subscripts of Sum and Carry in
the m-th and (m+1)-th clock cycle. The Sum and
Carry that are generated by (i-1)-th row in (m – 1)-
th cycle are right shifted to be assigned to the i-th
row in m-th clock cycle. The subscripts of Sum and
Carry resulting from the i-th row of basic cells in
the (m+1)-th cycle retain, indicating that they have
not been right shifted.

The reservation table in Fig. 3(b) shows the

filling of pipeline. Thus, although the total time
taken to generate the first Sin and Cin outputs is 2k
clock cycles, the throughput for subsequent results
after the first product has been output is merely two
clock cycles.

A variant of the 2-D systolic architecture – ‘Design
2’ is shown in Fig. 4. This implementation involves
only one row of basic cells. Input ai is sent serially
in alternate clock cycles into this row of basic cells.
Inputs B and N are applied in a parallel fashion.
Since each ai takes 2 clock cycles, Design 2 would
require 2k clock cycles to compute one Montgomery
multiplication result. The chip area however, is
reduced substantially at the expense of lower
throughput.

6 Results

MMM_MX ‘Design 1’ and ‘Design 2’ are evaluated
against recently reported Montgomery modular
multipliers in [5-8] for maximum clocking
frequency, throughput and area (in terms of logic
slices of targeted FPGA). For applications that
would benefit from a pipelined architecture,
throughput is a more important measurement for
performance than the latency required for a single
multiplication. A recent paper [5] by Fournaris et al.
compares some the latest reported Montgomery
modular multiplier architectures with their proposed
one-dimensional precomputation based architecture.
We compare the implementation of our architectures
against the results reported by Fournaris et al. in [5].
The comparisons are based on FPGA
implementation. The proposed designs are
implemented on Xilinx Virtex 2 chip and
synthesized using Xilinx Synthesis Tool (XST).
Design 1 and Design 2 are compared against

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp240-245)

different kinds of architectures, with and without
precomputation of B+N, carry-save/normal
representations and FPGA specific implementations,
reported in [5]-[8]. The MMM architectures in [5],
[7] and [8] are one-dimensional arrays whereas
those in [6] are two-dimensional systolic
architectures. [5] and [6] employ carry-save
representation but [7] and [8] are based on carry-
propagate adders. Unlike the ‘Conventional’
architecture in [6], the ‘Optimized’ architecture in
[6] is a two-dimensional systolic array that is based
on the precomputation of B+N. The more recent

architecture in [5] is a one-dimensional variant of
‘Optimized’ architecture in [6].

In Table I, the FPGA implementation results of
the proposed 1-D architecture – Design 2, are
compared against the 1-D architectures in [5], [7]
and [8]. We see from Table I that the proposed
Design 2 is faster than the recently reported
‘Optimized’ [5] by 3 times. The throughput of the
proposed architecture is 1.5 times that of
‘Optimized’ in [5]. Thus, even though the proposed
architecture takes one extra clock cycle in every
iteration to compute the Montgomery product, due
to its shorter critical path, it is still faster than all the

Fig. 2. Two-dimensional systolic architecture of Design 1

Fig. 3. (a) Indices of Sum S and Carry C of i-th row of basic cells in the m-th and (m+1)-th clock cycle (b) Reservation

table of the pipeline of the 2-D architecture

Fig. 4. One-dimensional systolic architecture of Design 2

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp240-245)

one-dimensional architectures shown in Table I. As
a result of this, the total latency is reduced and the
reduction in the total latency is prominent when it is
used for modular exponentiation, where the
operands are multiplied repetitively. Moreover, the
number of slices is also the least in comparison with
all the listed architectures.
 The two-dimensional systolic architectures were
implemented for a bit-length of 128. FPGA
implementation results of the proposed 2-D
architecture – Design 1, are compared against the
two-dimensional ‘Optimized’ and ‘Conventional’
architectures (from [6]) in Table II. In 2-D
architectures, the proposed multiplier also
outperforms its counterparts in both aspects.

TABLE I. FPGA IMPLEMENTATION RESULTS OF 1024-BIT

ONE-DIMENSIONAL MONTGOMERY MODULAR
MULTIPLIERS

Architecture Chip Area
(slices)

Clock
Frequency
(MHz)

Throughput
(bit/sec)

Design 2 2947 386.84 193.42 M
Optimized
[5]

3611 129.10 129.00 M

Daly [7] 5458 54.61 54.40 M
Ors [8] 5706 95.62 31.83 M

TABLE II. FPGA IMPLEMENTATION RESULTS OF 128-BIT

ONE-DIMENSIONAL MONTGOMERY MODULAR
MULTIPLIERS

Architecture Chip Area
(slices)

Clock
Frequency
(MHz)

Design 1 44330 358.17
Optimized [6] 48767 168.70
Conventional [6] 65473 156.30

7 Conclusion

The most important operation in RSA encryption
and decryption is the hardware-intensive modular
multiplication. This operation can be accomplished
by Montgomery modular multiplication. An
improved Montgomery multiplication – MMM_MX
has been proposed in this paper which reduces the
critical path by removing dependency on an
intermediate signal. Since MMM_MX is free from
any precomputations, modular exponentiation can
be efficiently carried out with this operator by
feeding back the result in line with the flow of the
input data continuously. Two systolic carry-save
architectures – one-dimensional bit-serial and two-
dimensional bit-parallel architectures, are discussed
and implemented. The bit-serial architecture trades

throughput for area. The two architectures were
evaluated against different kinds of recently
reported Montgomery modular implementations.
The proposed algorithm reduces the minimum clock
period by three times when compared with one of
the fastest algorithms.

References:
[1] B. Schneier, Applied Cryptography. 2nd Edition,

Wiley 1996.
[2] Y. Ching-Chao, C. Tian-Sheuan and J. Chein-Wei,

“A new RSA cryptosystem hardware design based on
Montgomery's Algorithm,” IEEE Trans. on Circuits
and Systems - II: Analog and Digital Singal
Processing, vol. 45, no. 7, pp. 908 -913, July 1998.

[3] P. L. Montgomery, “Modular Multiplication Without
Trial Division,” Math. Comput., vol. 44, pp. 519-521,
Apr. 1985.

[4] C. K. Koc, T. Acar and B. S. Kaliski, Jr., “Analyzing
and comparing Montgomery multiplication
algorithms,” IEEE Micro, vol. 16, pp. 26-33, June
1996.

[5] A. P. Fournaris and O. Koufopavlou, “A new RSA
encryption architecture and harware implementation
based on optimized Montgomery multiplication,” in
Proc. of IEEE Symp. on Circuits and Systems (ISCAS
2005), pp. 4645-4648, May 2005.

[6] A. P. Fournaris and O. Koufopavlou, “Montgomery
modular multiplier architecture and hardware
implementations for an RSA cryptosystem,” in Proc.
of 46th IEEE Intl. Midwest Symp. on Circuits and
Systems (MWSCAS 2003), pp. 27-30, Dec. 2003.

[7] A. Daly and W. Marnane, “Efficient architectures for
implementing Montgomery modular multiplication
and RSA modular exponentiation on reconfigurable
logic,” in Proc. of the 2002 ACM/SIGDA 10th Intl.
Symp. on Field-programmable Gate Arrays, pp. 40-
49, 2002.

[8] S. B. Ors, L. Batina, B. Preneel and J. Vandewalle,
“Hardware implementation of a Montgomery modular
multiplier in a systolic array," in Proc. of Intl.
Parallel and Distributed Processing Symp.
(IPDPS'03), 8 pp., Apr. 2003.

[9] N. Nedjah and L. de Macedo Mourelle, “Two
hardware implementations for the Montgomery
modular multiplication: sequential versus parallel," in
Proc. of the 15th Symp. on Integrated Circuits and
Systems Design (SBC CI'02), pp. 3-8, Sept. 2002.

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp240-245)

