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Prol. Paseo de la Reforma 880
Lomas de Santa Fe
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Abstract: In this work, using algebraic methods, we characterize the parameters of a linear fractional transforma-
tion such that the composition of a class of rational function with the linear fractional transformation preserves
stability, in the case that the rational function is stable, or stabilizes the original rational function, in the case that
the rational function is unstable. As a consequence, we obtain a dual result about the robust stabilization of a
plant—represented as a rational function—compensated with a controller when there is a nonlinear disturbance
induce by function composition on the parameters of the controller. This implies the non-fragility of the controller
and also the plant robust stabilization for the same class of disturbances. Also, for a particular choice of one of the
parameters in the linear fractional transformation, the composition of functions preserves the structure of Propor-
tional, Proportional-Derivative and Proportional-Derivative-Integral type of controllers.

Key–Words:Linear fractional transformation, composition, robust stabilization, PD/PI/PID controllers

1 Introduction

Recently in literature it has has appeared a series of
articles on the subject of preservation of stability for
linear systems in the frequency domain, [1, 3, 4, 5, 8].
In [5] it is presented a method on maps that preserve
the stability of stable polynomials, i.e., the map that
is obtained by multiplying the vector of coefficients
of stable polynomials by a fixed matrix to obtain a
vector of stable coefficients. This method does not
have a complete characterization of which matrices
preserve stability. Other methods, used a substitu-
tion of a rational function in a polynomial to guar-
antee stability and are based onH-domains and di-
agrams of Mikhailov [8]. In [1], it is used the sub-
stitution α(s) = as+b

cs+d
for the s variable in a stable

rational function and it is proven that for positive real
numbersa, b, c andd, such thatad − bc 6= 0, this
substitution preserves stability, but the case is very re-
strictive. In [3, 4], the results from [1] are extend and
generalize, showing that substitutions of thes vari-
able in a rational stable function by a strictly positive
real functions with relative degree zero, preserve sta-
bility, and under some additional conditions, powers
of functionsSPR0, also preserve stability, but only

sufficient conditions are given. In this work using al-
gebraic methods, we give a complete characterization
on the parameters of a linear fractional transforma-
tion, α(s) = as+b

cs+d
, such that the composition of a

class of rational, real, proper, stable or unstable func-
tions,H(s) = Nh(s)

Dh(s) , with the linear fraction transfor-
mationα(s) is stable, i.e., find the parametersa, b, c

andd such thatH (α(s)) is stable, withα(s) = as+b
cs+d

.
These results generalize and extend previous results
[1, 2, 3, 4]. In addition, it is possible to answer the
open problem proposed in [5] for the case of maps
that preserve stability, obtained under the substitution
of the variables by α(s) in a stable polynomial. This
is done by characterizing all the maps obtained under
this substitution, that preserve stability for any stable
polynomialDh(s) which is mapping to stable polyno-
mial (cs + d)m Dh(α(s)). In other words, we char-
acterized the space of parametersa, b, c and d for
which the map, preserves stability for any stable poly-
nomial, mapping stable polynomials in stable poly-
nomials. But also we characterized the space of pa-
rametersa ,b, c andd for which the map, stabilizes
unstable polynomials. As a consequence, we obtain
a dual result, in the sense that the robust stabiliza-

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp306-311)



tion of a plantH(s) with disturbances induced by the
substitution of the variables by α−1(s), with a con-
troller C(s), implies the non-fragility of the controller
C(s) under the same class of disturbances, induced by
the substitution of the variables by α(s), in the con-
troller, and vice versa i.e., the non-fragility of the con-
troller C(s) under disturbances induced by the sub-
stitution of the variables by α−1(s), implies the ro-
bust stabilization of a plantH(s) with disturbances,
induced by the substitution of the variables by α(s)
with a controllerC(s). In the particular case when
b = 0, the substitution of thes variable byα(s), pre-
serves the structure for Proportional-Derivative (PD),
Proportional-Integral (PI) and Proportional-Integral-
Derivative (PID) controllers. Based on the resulting
pseudo-parametrization for these controllers class af-
ter the substitution of the variables by α(s), taking
b = 0, we mention some ideas that could be used later
for tuning rules on the derivative part for the PD con-
trollers, and for the proportional and integral parts of
the PI controllers. Finally, we give a result about sta-
bilization based on passivity.

2 Preliminaries
This section we give the necessaries definitions and
notation used though out the paper.

Let R(s) be the set of rational functions with real
coefficients. Consider a rational functionH(s) ∈
R(s)

H(s) =
Nh(s)

Dh(s)
= k

sn + an−1s
n−1 + · · · + a0

sm + bm−1sm−1 + · · · + b0

whereNh(s) andDh(s) are coprime, withm ≥ n.
Let us factorizeH(s) asH(s) = Hr(s)Hc(s), where

Hr(s) = k
(s − z1) · · · (s − zn−l1)

(s − p1) · · · (s − pm−j1)

has real poles and zeros,l1 < n, j1 < m; and

Hc(s) =

[
(s − ρ1)

2 + ν2
1

]
· · ·
[
(s − ρl0)

2 + ν2
l0

]

[
(s − σ1)

2 + ω2
1

]
· · ·
[
(s − σj0)

2 + ω2
j0

]

has complex poles and zeros,l0 = l1
2 andj0 = j1

2 .

Definition 1 ([6, 7]) A real and rational function
H(s) is strictly positive real (SPR) if H(s) is ana-
lytic in Re[s] ≥ 0 andRe[H(jω)] > 0 for all ω ∈ R,
wherej =

√
−1. Moreover, a real and rational func-

tion p(s) is SPR0 if it is SPR and has zero relative
degree.

Let us define the following sets:

SPR0∗ =
{

p(s) ∈ R(s) : p(s) is SPR0
}
∪ {s} .

Γ(a, b, c, d) =
{

α(s) ∈ R(s) : α(s) =
as + b

cs + d
,

ad − bc 6= 0 anda, b, c, d > 0
}
∪ {s} .

The following properties can be easily verified for
the setΓ(a, b, c, d)

1. lim(b,c)→(0,0)
as+b
cs+a

= s, wherea2 − bc > 0;

2. if α(s), β(s) ∈ Γ(a, b, c, d), then
α(β(s)), β(α(s)) ∈ Γ(a, b, c, d).

From the associative property of function composi-
tion, we know that the setΓ(a, b, c, d) is a non com-
mutative monoid under the composition operation.
Additionally, is well know thatΓ(a, b, c, d) ⊂ SPR0∗,
[1].

3 On the preservation of stabiliza-
tion, fragility and passivity in PI,
PD and PID controllers

Consider a Single-Iput Single-Output (SISO) Linear
Time-Invariant (LTI) system with state variable repre-
sentation

ẋ = Ax + Bu

y = Cx + Du
(1)

with A ∈ R
n×n, B ∈ R

n, C ∈ R
1×n andD ∈ R; and

transfer function representation

H(s) = C (sI − A)−1 + D

We use a linear fraction transformation,α(s) = as+b
cs+d

,
to obtain the SISO LTI systemH(α(s)) with state
variables representation

ẋ = (dA − bI) QAx + (ad − bc)QABu

y = CQAx + (D + cCQAB) u
(2)

with QA = (aI − cA)−1.
The problems to study in this section are the fol-

lowing:

1. If system (1) is stable, for which set of parame-
tersa, b, c, d, system (2) is stable?

2. If system (1) is unstable, for which set of param-
etersa, b, c, d, system (2) is stable?
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The answers to the previous questions are given
in the following two results.

Lemma 2 Consider a plant H(s) = Nh(s)
Dh(s)

whereNh(s) and Dh(s) are polynomials satisfying
deg Dh(s) = m ≥ deg Nh(s) = n. Let us also de-
fine the lineal fractional transformationα(s) = as+b

cs+d
wherea, b, c andd are real numbers such thatcd 6= 0
and ad − bc 6= 0.Let us substitute thes variable
by α(s) in H(s), i.e., H (α(s)). Then, Hα(s) ≡
H(α(s)) is stable if and only if the following condi-
tions holds:

1. Eitherpid−b > 0 anda−pic < 0, or pid−b < 0
anda−pic > 0 for eachi = 1, . . . , m−j1 where
p1, . . . , pm−j1 are the real poles ofH(s);

2. the parametersa, b, c andd satisfies

σ2
i −

(
a

c
+

b

d

)
σi +

ab

cd
+ ω2

i > 0

for i = 1, . . . , j0, whereσi +jωi are the complex
poles ofH(s).

Remark 3 Notice that if we considerx = a
c

andy =
b
d
, the functionf(x, y) = σ2

j − (x + y) σj + xy + ω2
j

has a local minimum atx = y = σj , butf(x, y) does
not have a global minimum forx, y ∈ R.

Note that the parametersa, b, c andd can be neg-
ative, andc andd must be different from zero. More-
over, no assumption on the sign of the poles ofH(s)
is made.

The case when one or two of the parametersa,
b, c and d are zero or negative is considered in the
following result. It is clear that there exist only two
cases that make sense for two parameters equal to zero
and none for more than two parameters equal to zero.

Lemma 4 Consider H(s) = Nh(s)
Dh(s) as defined in

Lemma 2, but stable, (i.e.,p1, . . . , pm−j1 < 0,
σ1, . . . , σj0 < 0). ThenH(α(s)) is a stable plant if
α(s) andH(s) satisfies at least one of the following
conditions:

1. a, b, c, d > 0 andad − bc 6= 0, or a, b, c, d < 0
andad − bc 6= 0;

2. b, c, d > 0, a = 0 or b, c, d < 0, a = 0; and all
the poles inH(s) must be complex.

3. a, c, d > 0, b = 0 or a, c, d < 0, b = 0;

4. a, b, d > 0, c = 0;

5. a, b, c > 0, d = 0, andmax {σ1, . . . , σj0} < a
c
;

6. a, d > 0, b = c = 0 or a, d < 0, b = c = 0;

7. b, c > 0, a = d = 0 or b, c < 0, a = d = 0; and
all the poles inH(s) must be real.

8. a, b > 0, d < 0, c = 0 and pid − b < 0 for
i = 1, . . . , m − j1 andmax {σ1, . . . , σj0} < b

d
;

9. a, b < 0, d < 0, c = 0;

10. a < 0, b > 0, d < 0, c = 0 and pid − b > 0
for i = 1, . . . , m − j1 andb − dσj > 0 for j =
1, . . . , j0;

11. a, b > 0, c < 0, d = 0, a − pic > 0 for i =
1, . . . , m−j1 anda−σjc > 0 for j = 1, . . . , j0;

12. a, b < 0, c < 0, d = 0; a, b, c > 0, d = 0.

13. a > 0, b < 0, c < 0, d = 0 and a − pic < 0
for i = 1, . . . , m − j1 anda − cσj > 0 for j =
1, . . . , j0.

Remark 5 Whena > 0, b < 0, d < 0, c = 0 or a <
0, b > 0, c < 0, d = 0 then stability is not guarantee,
and stable plants are not mapped into stable plants,
unlessp1, . . . , pm−j1 > 0 andσ1, . . . , σj0 > 0.

Lemma 6 In the case whenp1, . . . , pm−j1 > 0 and
σ1, . . . , σj0 > 0 the plantH(α(s)) is a stable if at
least one of the following conditions holds:

1. a > 0, b < 0, d < 0, c = 0 and pid − b < 0
for i = 1, . . . , m − j1 andb − dσj > 0 for j =
1, . . . , j0;

2. a < 0, b > 0, c < 0, d = 0 and a − pic < 0
for i = 1, . . . , m − j1 anda − cσj > 0 for j =
1, . . . , j0.

Now we are going to present some applications
of the former technical results to the duality between
robust stabilization and fragility of controllers.

Proposition 7 Let us consider the proper plant
H(s) = Nh(s)

Dh(s) and the proper controllerC(s) =
Nc(s)
Dc(s)

such that it stabilizes the plant, whereNh(s),

Nc(s), Dc(s) and Dh(s) are polynomials with
deg D(s) = n ≥ deg N(s). Also consider the lin-
ear transformationα(s) = as+b

cs+d
werea, b, c, d ∈ R,

and let us substitute thes variable byα−1(s) = b−ds
cs−a

in H(s). Then:

1. the controllers of the formCα(s) ≡ C(α(s))
stabilizesH(s), if C(s) stabilizes in a robust
way the plantHα−1(s) ≡ H(α−1(s)), where
the a, b, c, d parameters satisfy at least one of
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the conditions of Lemma 4, or the conditions of
Lemma 2 for the closed loop plant:

P̄ (s) =
C(s)Hα−1(s)

1 + C(s)Hα−1(s)
.

2. the controllerC(s) stabilizes in a robust way
the plantsHα(s) ≡ H(α(s)), if the controllers
C(α−1(s)) stabilizes the plantH(s), where the
a, b, c, d parameters satisfies at least one of the
conditions of Lemma 4, or the conditions of
Lemma 2 for the closed loop plant:

P̂ (s) =
C(α−1(s))H(s)

1 + C(α−1(s))H(s)
.

Now, for the particular case, when the controller
is a PD, PI,or PID is studied.

Let us consider a PD controller of the form
CPD(s) = Kp + KDs

s+r
, and a PI controller of the form

CPI(s) = Kp + KI

s
. These controllers can be rewrit-

ten as: CPD(s) =
(Kp+KD)s+Kpr

s+r
and CPI(s) =

Kps+KI

s
. Note thatCPD(s) ∈ Γ(a, b, c, d) if Kp, KD,

r > 0. We can now attack the problem of the non-
fragile stabilization under non linear disturbances in-
duced by the substitution of thes variable by the linear
fractional transformationα(s).

We then have the following results:

Corollary 8

1. If the controllerCPD(s) = Kp + KDs
s+r

robustly
stabilizes the plantsHα−1(s), where the param-
etersa, b, c, d satisfies at least one of the con-
ditions of Lemma 4 for the closed loop system
formed byCPD(s) and Hα−1(s), then the con-
trollers

CPD(α(s)) =

(
(Kp + KD)a + Kprc

a + rc

)
s + b+ld

a+lc

s + b+rd
a+rc

stabilizes H(s) with l =
Kpr

Kp+KD
. If

α(s) ∈ Γ(a, b, c, d), and Kp, KD, r > 0, then
CPD(α(s)) ∈ Γ(a, b, c, d).

2. If the controllerCPI(s) = Kp + KI

s
robustly sta-

bilizes the plantsHα−1(s), where the parameters
a, b, c, d satisfies at least one of the conditions of
Lemma 4 for the closed loop system formed by
CPI(s) andHα−1(s), then the controllers

CPI(α(s)) =

(
Kpa + KIc

a

)
s +

Kpb+KId

Kpa+KIc

s + b
a

stabilizesH(s). If α(s) ∈ Γ(a, b, c, d) and
Kp, KI > 0, thenCPI(α(s)) ∈ Γ(a, b, c, d).

Note that the controllersCPD(α(s)) and
CPI(α(s)) in Corollary 8 are not PD or PI controllers
(unlessb = 0). Both controllers are lead-lag net-
works. AsΓ(a, b, c, d) ⊂ SPR0∗, thenCPD(α(s))
and CPI(α(s)) are strictly passive controllers.
Obviously, they are also a dual version of this result.

When the substitution isγ(s) = as
cs+d

we then
have the following interesting result:

Corollary 9

1. If CPD(s) = Kp + KDs
s+r

robustly stabilizes the
familyHγ−1(s), then the PD controllers:

ĈPD(s) = Kp +
K̂Ds

s + q

with K̂D = aKD

a+rc
andq = rd

a+rc
, stabilizesH(s),

for any reala, b, c, d such thata, c, d > 0 and
b = 0;

2. If CPI(s) = Kp+ KI

s
robustly stabilizes the fam-

ily Hγ−1(s), then the PI controllers:

ĈPI(s) = K̂p +
K̂I

s

with K̂p = Kp + KIc
a

andK̂I = dKI

a
, stabilizes

H(s), for any reala, b, c, d such thata, c, d > 0
andb = 0;

3. If CPID(s) =
(
Kp + KI

s

)(
Kp + KDs

s+r

)
ro-

bustly stabilizes the familyHγ−1(s), then the
PID controllers:

ĈPID(s) =

(
K̂p +

K̂I

s

)(
Kp +

K̂Ds

s + q

)

with K̂p = Kp + KIc
a

, K̂I = dKI

a
and K̂D =

aKD

a+rc
, stabilizesH(s), for any reala, b, c, d such

thata, c, d > 0 andb = 0.

Clearly, the substitutionγ(s), preserves the struc-
ture of the PD and PI controllers. In the case of PD
controllers it is interesting to note that theKp constant
doesn’t change. This can be interpreted in the follow-
ing way: the predictive part of the PD controller can
be modified following the relations:

K̂D =
aKD

a + rc

q =
rd

a + rc

They can be seen as a pseudo-parametrization of the
derivative part. We can then used this information to
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develop in the future tuning rulers for the derivative
part of the controller. In the same way, we can see
that in the case of PI controllers the gains change fol-
lowing

K̂p = Kp +
KIc

a

K̂I =
dKI

a

By using standard results on passivity, we can to
give the following result.

Corollary 10 Consider the following controllers:

1. C1(s) = CPI(s) = Kp+ KI

s
whereKp, KI > 0.

2. C2(s) = CPD(s) = Kp + KDs
s+r

where
r, Kp, KD > 0.

3. C3(s) = CLL(s) = Kp
1+TNs
1+TDs

where
Kp, TD, TN > 0.

4. C4(s) = CPID1
(s) = Kp + KI

s
+ KDs

s+r
where

r, Kp, KI , KD > 0.

5. C5(s) = CPID2
(s) = Kp + KI

s
+ KDs where

Kp, KI , KD > 0.

6. C6(s) = CPID3
(s) = Kp

(
1+Tis

Tis

)
1+Tds
1+ηTds

whereKp > 0, 0 < Td < Ti and0 < η ≤ 1.

7. C7(s) = CPID4
(s) = Kpβ

(
1+Tis
1+βTis

)
1+Tds
1+ηTds

whereKp > 0, 0 < Td < Ti, 1 ≤ β and
0 < η ≤ 1.

Now the following assumption is made: Given a fixed
plantH(s), there exists a subsetΩ of linear transfor-
mationsα(s) = as+b

cs+d
wherea, b, c, d are real num-

bers, such thatH(α(s)) is a PR function for each
α(s) ∈ Ω.

Then, for all SPR0 function ν(s) and for all
α(s) ∈ Ω, the controllerCj(ν(s)) stabilizes to the
plantH(α(s)) for j = 1, . . . , 7.

Notice that the plantH(s) can be unstable and
non minimum phase and that the controllerC7(ν(s))
stabilizes to the plantH(α(s)) for anyν(s) ∈ SPR0∗.

4 Example

We take a plant of the form

p1(s) =
2(s + 1)

s2 + 2s − 3

and a lead-lag controller

c1(s) =
34.745(s + 1.6373)

s + 37.9063
,

which stabilizes this plant. Letα−1(s) = b−ds
cs−a

, then
the closed-loop transfer function is given by

H(s) =
c1(s)p1(α

−1(s))

1 + c1(s)p1(α−1(s))

with denominator

f(s, a, b, c, d) = A3s
3 + A2s

2 + A1s + A0

and coefficients

A3 = −66.49c2 − 1.0d2 + 71.49cd

A2 =2.0bd + 189.59cd − 71.49bc + 132.98ac

− 5.7077 × 10−2c2 − 37.906d2 − 71.49ad

A1 = 0.11415ac − 189.59ad + 75.813bd − 66.49a2

− 189.59bc − 1.0b2 + 71.49ab

A0 = 189.59ab − 37.906b2 − 5.7077 × 10−2a2

This polynomial is stable if and only if the following
inequalities are met:

A0 > 0, A1 > 0

A2 > 0, A3 > 0

A1A2 − A0A3 > 0

Moreover, we require to meet at least one of the con-
ditions 1., 2., 3., 6., or 7., in Lemma 4. Now by item
1. in Proposition 7, the controllers

c1(α(s)) =
1.73

[(
104a + 16373c

)
s + 104b + 16373.d

]

(500.0a + 18953.c) s + 500.0b + 18953.d

stabilize the plantp1(s) for the set of parameters
a, b, c, d that met with the last conditions. For exam-
ple with a, d ∈

[
10.0−3, 8

]
, b, c ∈ [0, 5], we get the

controllersc1(α(s)) stabilizesp1(s).

5 Conclusions
We have characterized the space of parameters
a, b, c, d for which the maps → α(s), preserves sta-
bility for any stable polynomial, mapping stable poly-
nomials in stable polynomials. But also we charac-
terized the space of parametersa, b, c, d for which the
map before mentioned, mapping unstable polynomi-
als in stable polynomials. Like a consequence, we
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obtain a dual result, in the sense that the robust sta-
bilization of a plantH(s) with disturbances nonlin-
ear in its parameters, induced by the substitution of
the variables by α−1(s), with a controllerC(s), im-
plies the nonfragility of the controllerC(s) under the
same class of disturbances, induced by the substitu-
tion of the variables by α(s), in the controller, and
the nonfragility of the controllerC(s) under distur-
bances, induced by the substitution of the variables
by α−1(s), in the controller, implies the robust stabi-
lization of a plantH(s) with disturbances nonlinear
in its parameters, induced by the substitution of the
variables by α(s) with a controllerC(s). In the par-
ticular case whenb = 0, the substitutionα(s), pre-
serves the structure of the controllers type PD/PI/PID
and we give some ideas to use later for tuning rules for
the derivative part of the controller type PD, and for
the proportional and integral part of the controller type
PI. Based on the resulting pseudo-parametrization for
this type of controller, after of the substitution of the
variables by α(s), takingb = 0. Finally, we given a
result about stabilization based in passivity.

References:
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[2] G. Ferńandez, Preservation of SPR functions
and stabilization by substitutions in SISO plants,
IEEE Trans. Automat. Contr., 44, 2161-2164,
1999.
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