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Abstract: In tMEXITIO using algebraic methods, we characterize the parameters of a linear fractional transforma-
tion such that the composition of a class of rational function with the linear fractional transformation preserves
stability, in the case that the rational function is stable, or stabilizes the original rational function, in the case that
the rational function is unstable. As a consequence, we obtain a dual result about the robust stabilization of &
plant—represented as a rational function—compensated with a controller when there is a nonlinear disturbance
induce by function composition on the parameters of the controller. This implies the non-fragility of the controller
and also the plant robust stabilization for the same class of disturbances. Also, for a particular choice of one of the
parameters in the linear fractional transformation, the composition of functions preserves the structure of Propor-
tional, Proportional-Derivative and Proportional-Derivative-Integral type of controllers.
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1 Introduction sufficient conditions are given. In this work using al-

o ] ) gebraic methods, we give a complete characterization
Recently in literature it has has appeared a series of o the parameters of a linear fractional transforma-

articles on the subject of preservation of stability for tion o(s) = as+b " such that the composition of a
linear systems in the frequency domain, [1, 3, 4,5, 8]. ¢|ass of rational, real, proper, stable or unstable func-

In [5] it is presented a method on maps that preserve .. _ Nu(s) : : .
the stability of stable polynomials, i.e., the map that tions, H(s) = Dh(s)'Wlth the linear fraction transfor

is obtained by multiplying the vector of coefficients ~Mationa(s) is stable, i.e., find the parametersb, c

of stable polynomials by a fixed matrix to obtain a andd such thatH (a(s)) is stable, withx(s) = “5F5.
vector of stable coefficients. This method does not These results generalize and extend previous results
have a complete characterization of which matrices [1, 2, 3, 4]. In"addition, it is possible to answer the
preserve stability. Other methods, used a substitu- OP€n problem proposed in [5] for the case of maps
tion of a rational function in a polynomial to guar- that preserve stability, obtained under the substitution
antee stability and are based éhrdomains and di-  Of the variables by a(s) in a stable polynomial. This

agrams of Mikhailov [8]. In [1], it is used the sub- IS done by characterizing all the maps obtained under
stitution a(s) = 1% for the s variable in a stable  this substitution, that preserve stability for any stable

cs+d . . . .
rational function and it is proven that for positive real  Polynomial Dy (s) which is mapping to stable polyno-
numbersa, b, ¢ andd, such thatad — be # 0, this mial (cs +d)™ Dp(a(s)). In other words, we char-

substitution preserves stability, but the case is very re- acterized the space of parametersh, ¢ andd for
strictive. In [3, 4]-the results from [1] are extend and  Which the map, preserves stability for any stable poly-
generalize, showing that substitutions of theari- nomial, mapping stable polynomials in stable poly-
able in a rational stable function by a strictly positive ~Nnomials. But also we characterized the space of pa-
real functions with relative degree zero, preserve sta- fametersa ,b, ¢ andd for which the map, stabilizes
bility, and under some additional conditions, powers unstable polynomials. As a consequence, we obtain
of functions SPRO, also preserve stability, but only ~ & dual result, in the sense that the robust stabiliza-
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tion of a plantH (s) with disturbances induced by the
substitution of the variable by a~!(s), with a con-
troller C'(s), implies the non-fragility of the controller

C'(s) under the same class of disturbances, induced by

the substitution of the variableby a(s), in the con-
troller, and vice versa i.e., the non-fragility of the con-
troller C(s) under disturbances induced by the sub-
stitution of the variables by a~!(s), implies the ro-
bust stabilization of a plank/(s) with disturbances,
induced by the substitution of the variabldy a(s)

with a controllerC(s). In the particular case when

b = 0, the substitution of the variable bya(s), pre-
serves the structure for Proportional-Derivative (PD),
Proportional-Integral (P1) and Proportional-Integral-
Derivative (PID) controllers. Based on the resulting
pseudo-parametrization for these controllers class af-
ter the substitution of the variableby «(s), taking

b = 0, we mention some ideas that could be used later
for tuning rules on the derivative part for the PD con-
trollers, and for the proportional and integral parts of
the PI controllers. Finally, we give a result about sta-
bilization based on passivity.

2 Preliminaries

This section we give the necessaries definitions and
notation used though out the paper.
LetR(s) be the set of rational functions with real

coefficients. Consider a rational functidii(s) €
R(s)
H(s) = n(s) _p 5" Hans" 4t ag
Dy (s) 8™ 4 byy18™ L 4+ 4 by

where N, (s) and Dy (s) are coprime, withm > n.
Let us factorizeH (s) asH(s) = H,(s)H.(s), where

(s—z1)--- (s = 2zn1y)
(s =p1) - (s = Pm—yjs)

H,(s) =k

has real poles and zerds,< n, j1 < m; and

(5= o)+ 2] -+ [(5 = pio)? + 22

= (5= 00" +f] |5 = o50)? + 2 |

has complex poles and zerds= % andjo = 2.

Definition 1 ([6, 7]) A real and rational function
H(s) is strictly positive real §PR) if H(s) is ana-
lytic in Re[s] > 0 andRe[H (jw)] > 0 forall w € R,
wherej = v/—1. Moreover, a real and rational func-
tion p(s) is SPRO if it is SPR and has zero relative
degree.

Let us define the following sets:

SPRO* = {p(s) € R(s) : p(s) is SPRO} U {s}.
_as+b

cs+d’
ad — bc # 0 anda, b, ¢, d > O} U{s}.

[(a,b,c,d) = {a(s) € R(s) : afs)

The following properties can be easily verified for
the sefl’(a, b, ¢, d)
L. Tim,e-(0.0) £55a
2. if  a(s), B(s) e TIV(a,b,c,d),
a(B(s)), Blals)) € I'(a, b, ¢, d).

From the associative property of function composi-
tion, we know that the sdt(a, b, ¢, d) is a non com-
mutative monoid under the composition operation.
Additionally, is well know that(a, b, ¢, d) € SPRO*,

[1].

= s, wherea? — be > 0;

then

3 On the preservation of stabiliza-
tion, fragility and passivity in PI,
PD and PID controllers

Consider a Single-Iput Single-Output (SISO) Linear
Time-Invariant (LTI) system with state variable repre-
sentation

T = Az + Bu

1)
y=Cx+ Du

with A € R"»*" B ¢ R", C € R™*™ andD < R; and
transfer function representation

H(s)=C(sI—A)'+D

We use a linear fraction transformatiens) = gjjg,
to obtain the SISO LTI systen#/ (a(s)) with state

variables representation

&= (dA —bl) Qaz + (ad — bc) Q4 Bu

2
y=CQax+ (D+cCQaB)u @
with Q4 = (al — cA)™ .
The problems to study in this section are the fol-
lowing:

1. If system (1) is stable, for which set of parame-
tersa, b, ¢, d, system (2) is stable?

2. If system (1) is unstable, for which set of param-
etersa, b, ¢, d, system (2) is stable?
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o

The answers to the previous questions are given a,d>0,b=c=00ra,d<0,b=c=0;

in the following two results.
7.b,c>0,a=d=00rb,c<0,a=d=0;and

Lemma 2 Consider a plant H(s) = ghgs% all the poles inH (s) must be real.

h(S
where N, (s) and Dy,(s) are polynomials satisfying 8.a,b>0,d<0,¢c=0andpd—>b < 0 for
deg Dy (s) = m > deg Nj,(s) = n. Let us also de- i=1,...,m—j;andmax {o1,...,0j,} < %;
fine the lineal fractional transformatioa(s) = gjj;g _
wherea, b, c andd are real numbers such thatl = 0 9.a,6<0,d<0,c=0;
and ad — bc # 0.Let us substitute the variable _ e
by a(s) in (), i€, H(ofs). Then () = 10 g 50000 b g 0TI TS 20
H(a(s)) is stable if and only if the following condi- 1 jo" ’ /

tions holds:

1. Eitherp;d—b > 0 anda—p;c < 0, or p;d—b < 0 11.a,b6>0,¢<0,d=0a—pc>0fori=

anda—p;c > 0foreachi =1, ..., m—j; where L...,m=jianda—ojc>0forj =1,..., jo;
P1,- - Pm—j are the real poles off(s); 12. a,b < 0,c¢< 0,d = 0; a,b,c > 0,d = 0.

2. the parameters, b, c andd satisfies 13.a > 0,b<0,c < 0,d = 0anda — pjc < 0
, - ab , forz:.l,...,m—glanda—caj>0forg:
of —|—-+=)oi+—+w;>0 L,.... Jo.

c d cd

Remark 5 Whena > 0,0 < 0,d < 0,c=00ra <

fori =1,..., jo, Whereo; + juw; are the complex %" " ') "1 " then stability is not guarantee,

poles ofH (). and stable plants are not mapped into stable plants,
Remark 3 Notice that if we consider = ¢ andy = uniesspr, ..., pm—j, > 0 andoy, ..., 7jo > 0.

4 the functionf (z,y) = o — (v +y) 0; + 2y + ] Lemma 6 In the case whep,, ..., p,_j > 0 and
has a local minimum at = y = o, but f(z,y) does 5, 5. > 0 the plantH(a(s)) is a stable if at
not have a global minimum far, y € R. least one of the following conditions holds:

Note that the parametetis b, c andd can be neg- 1.a>0,b<0,d<0,c=0andpd—b <0
ative, andc andd must be different from zero. More- fori=1,....,m — j; andb — do; > 0 for j =
over, no assumption on the sign of the polesfs) 1 jo'7 ’ J
is made. e

The case when one or two of the parameters 2.a<0,b>0,¢<0,d=0anda — pic <0
b, ¢ andd are zero or negative is considered in the fori=1,...,m —j1anda — co; > 0forj =
following result. It is clear that there exist only two 1,...,%0.
cases that make sense for two parameters equal to zero _ o
and none for more than two parameters equal to zero. Now we are going to present some applications

of the former technical results to the duality between

Lemma 4 Consider H(s) = as defined in robust stabilization and fragility of controllers.

Lemma 2, but stable, (i.epi,...,pm—j; < 0,
o1,...,05 < 0). ThenH(a(s)) is a stable plant if
a(s) and H (s) satisfies at least one of the following

Proposition 7 Let us consider the proper plant

H(s) = gﬁﬁii and the proper controllelC(s) =

conditions: gg; such that it stabilizes the plant, wheré,(s),
1. a,b,¢,d > 0 andad — be # 0, or a, b, ¢,d < 0 Ne(s), Dec(s) and Dy(s) are polynomials with
andad — be # 0; deg D(s) = n > deg N(s). Also consider the lin-

ear transformatiom(s) = 2+ werea, b, c,d € R,

2.b,¢,d>0,a=00rb,cd<0,a=0;andal and let us substitute thevariable bya~!(s) = =4

the poles inH (s) must be complex. in H(s). Then:

3.a,¢,d>0,b=00ra,cd<0b=0; 1. the controllers of the fornC,(s) = C(a(s))

4. a,b,d>0,c=0; stabilizes H (s), if C(s) stabilizes in a robust

way the plantd,-1(s) = H(a"'(s)), where
5. a,b,c>0,d=0,andmax {o1,...,05} < %, the a, b, c,d parameters satisfy at least one of
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the conditions of Lemma 4, or the conditions of Note that the controllersCpp(a(s)) and
Lemma 2 for the closed loop plant: Cpr(a(s)) in Corollary 8 are not PD or Pl controllers
) Cs)H,1 (s) (unlessb = 0). Both controllers are lead-lag net-

P(s) = o~ , works. AsT'(a,b,c,d) C SPRO*, thenCpp(a(s))
1+ C(s)Ha-1(s) and Cpj(a(s)) are strictly passive controllers.
Obviously, they are also a dual version of this result.

When the substitution ig(s) = -2, we then

; : . cs+d
have the following interesting result:

2. the controllerC(s) stabilizes in a robust way
the plantsH,(s) = H(«(s)), if the controllers
C(a~1(s)) stabilizes the planfi(s), where the
a, b, c,d parameters satisfies at least one of the

5§ » Corollary 9
conditions of Lemma 4, or the conditions of
Lemma 2 for the closed loop plant: 1. IfCpp(s) = K, + ffj robustly stabilizes the
b6 Cla~Y(s))H(s) family .1 (s), then the PD controllers:
s) = .
1+ C(a1(s))H(s) R IA(DS
) CPD(S) = Kp +

Now, for the particular case, when the controller s+4q
isa PD, Pl,or PID is studied. I d -

Let us consider a PD controller of the form }N'th Kp = Ia+7% anc‘qu _haJ{ﬁc,tstab;lllzesgI(s)a
Cpp(s) = K+ ££2, and a Pl controller of the form bor_%r_]y reala, b, ¢, d such thala, c,a > 4 an
Cpi(s) = Kp + % These controllers can be rewrit- '
ten as: Cpp(s) = (Kpt+Kp)st+Kpr 504 Cpi(s) = 2. IfCpy(s) = Kw—% robustly stabilizes the fam-
K5t K st _ ily H_-1(s), then the Pl controllers:
==L Note thatCpp(s) € I'(a,b, c,d) if K,, Kp,

r > 0. We can now attack the problem of the non- N Ky

fragile stabilization under non linear disturbances in- Cpr(s) = Kp,+ —

duced by the substitution of tesariable by the linear 5

fractional transformation(s). with K, = K, + £2¢ and K; = 41, stabilizes
R . a a !

We then have the following results: H(s), for any reala, b, c, d such thata, ¢,d > 0
Corollary 8 andb =0,

1. If the controllerCpp(s) = K, + ffj robustly 3. If Cpip(s) = (Kp + %) (Kp + ffﬁ) ro-
stabilizes the plant#/,,-1(s), where the param- bustly stabilizes the familyZ, i (s), then the
etersa, b, ¢, d satisfies at least one of the con- PID controllers:
ditions of Lemma 4 for the closed loop system . .
formed byCpp(s) and H,-1(s), then the con- ~ .Y Kps
trollers Crip(s) = | Kp+ =7 | | Ko+ q

(KP+KD)G+KPTC s+ Z—Jtll(i LD K = dK =
Cpplals) = P e with K, = K, + £2¢, Ky = % and Kp =
5T atre Zfﬁc stabilizesH (s), for any reala, b, ¢, d such
o ; _ Kpr thata,c,d > 0 andb = 0.

stabilizes H(s) with | = kg M a,c

a(s) € I'(a,b,¢,d), and K}, Kp,r > 0, then Clearly, the substitution(s), preserves the struc-

Cpp(a(s)) € T(a,b,c,d). ture of the PD and PI controllers. In the case of PD

controllers itis interesting to note that th&, constant
doesn’t change. This can be interpreted in the follow-
ing way: the predictive part of the PD controller can
be modified following the relations:

2. Ifthe controllerCp;(s) = K,+ £ robustly sta-
bilizes the plantd7,,-1(s), where the parameters
a, b, ¢, d satisfies at least one of the conditions of
Lemma 4 for the closed loop system formed by

Cpr(s) and H,-1(s), then the controllers 7 _ aKp
Kpb+Krd P atre
Kpa+ Krc\ 5+ Ryarke rd
Cpi(a(s)) = 7 q=
a S + . a—+rc
stabilizesH(s). If a(s) € I'(a,b,c,d) and They can be seen as a pseudo-parametrization of the

K,,Kr > 0,thenCpr(a(s)) € I'(a, b, c,d). derivative part. We can then used this information to



develop in the future tuning rulers for the derivative
part of the controller. In the same way, we can see
that in the case of PI controllers the gains change fol-
lowing

K

R, =FK,+—1

a
_ K
Kr=-—1
a

By using standard results on passivity, we can to
give the following result.

Corollary 10 Consider the following controllers:

1. Ci(s) = Cpi(s) = K,+ LI whereK,, K| > 0.

2. CQ(S) = CPD(S) = K + Is(ff where
r Ky, Kp > 0.

3. C3(s) = Ciuls) = Ky where
K,,Tp, Ty > 0.

4, C4<8) = CPIDl(S) K + KI + I;ff where

r, Ky, K1, Kp > 0.

5. C5<S) = CPIDQ(S) K —|— L + Kps where
K, K;,Kp > 0.
6. Cs(s) = Cripy(s) = Kp (IJ%Y;S) e

whereK, > 0,0 < Ty < T; and0 < n < 1.

14Tys \ 147
7. C:7(s) = Cpip,(s) = 1-:rﬁTSs) 1++nz§dss

where K, > 0, 0 < Td < T;,1 < gand
0<n<1

Now the following assumption is made: Given a fixed
plant H (s), there exists a subseX of linear transfor-

mationsa(s) = ngfg wherea, b, ¢, d are real num-

bers, such that (a(s)) is a PR function for each
a(s) € Q.

Then, for all SPRO function v(s) and for all
a(s) € Q, the controllerC;(v(s)) stabilizes to the
plant H(«(s)) forj =1,...,7.

Notice that the plant/(s) can be unstable and
non minimum phase and that the controlfén(v(s))
stabilizes to the plarf («(s)) for anyv(s) € SPRO*.

4 Example

We take a plant of the form

2(s+1)

ns) = 55,3
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and a lead-lag controller

34.745(s + 1.6373)
s+ 37.9063

which stabilizes this plant. Let!(s) = 24,
the closed-loop transfer function is given by

c1(s)pi(a”(s))
1+ ci(s)pr(e(s))

c1(s) =

then

H(s) =

with denominator

f(s,a,b,c,d) = Azs® + Ags® + A1s + Ay

and coefficients

Az = —66.49¢* — 1.0d% + 71.49¢d
Ay =2.0bd + 189.59¢d — 71.49bc + 132.98ac
— 5.7077 x 107 2¢? — 37.906d? — 71.49ad
Ay =0.11415ac¢ — 189.59ad + 75.813bd — 66.49a>
— 189.59b¢ — 1.0b? + 71.49ab
Ay = 189.59ab — 37.906b* — 5.7077 x 10 %a?

This polynomial is stable if and only if the following
inequalities are met:

Ao >0, A1 >0
Ay >0, A3>0
A1 Ay — AgAs >0
Moreover, we require to meet at least one of the con-

ditions 1., 2., 3., 6., or 7., in Lemma 4. Now by item
1. in Proposition 7, the controllers

1.73 [(10%a + 16373c) s + 10%b + 16373.d|

() = 500,00 + 18953.¢) s + 500.06 + 18953.d

stabilize the plantp;(s) for the set of parameters
a, b, ¢, d that met with the last conditions. For exam-
ple witha,d € [10.072,8], b,c € [0,5], we get the
controllersc; (a(s)) stabilizesp; (s).

5 Conclusions

We have characterized the space of parameters
a, b, ¢, d for which the maps — a(s), preserves sta-
bility for any stable polynomial, mapping stable poly-
nomials in stable polynomials. But also we charac-
terized the space of parameter$, ¢, d for which the
map before mentioned, mapping unstable polynomi-
als in stable polynomials. Like a consequence, we
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obtain a dual result, in the sense that the robust sta- [8] B. T. Polyak and Ya. Z. Tsypkin, Stability and ro-
bilization of a plantH (s) with disturbances nonlin- bust stability of uniform systemgutomation and
ear in its parameters, induced by the substitution of Remote Contr46 (1995) 1505-1516.
the variables by a~!(s), with a controllerC(s), im-

plies the nonfragility of the controllef'(s) under the

same class of disturbances, induced by the substitu-

tion of the variables by «(s), in the controller, and

the nonfragility of the controlleC(s) under distur-

bances, induced by the substitution of the variable

by a~!(s), in the controller, implies the robust stabi-

lization of a plantH (s) with disturbances nonlinear

in its parameters, induced by the substitution of the

variables by «(s) with a controllerC(s). In the par-

ticular case wheh = 0, the substitutionx(s), pre-

serves the structure of the controllers type PD/PI/PID

and we give some ideas to use later for tuning rules for

the derivative part of the controller type PD, and for

the proportional and integral part of the controller type

Pl. Based on the resulting pseudo-parametrization for

this type of controller, after of the substitution of the

variables by a(s), takingb = 0. Finally, we given a

result about stabilization based in passivity.
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