
Constructing Web Service in Equivalent Transformation
Programming Language

Zheng Cheng＊ Katsunori Katou Kiyoshi Akama

Information Initiative Center
Hokkaido University

Kita 11 Nishi 5, Sapporo, 060-0811
Japan

teisei@uva.cims.hokudai.ac.jp katou@uva.cims.hokudai.ac.jp akama@iic.hokudai.ac.jp

Abstract: - research on the Web Services has rapidly developed in recent years. A Web Service is a technology that
makes the distributed applications on a network cooperate by using the standard technology of the Internet
compared with the Web site. It transforms the methods and the data tendered to it from WSDL into a utilizable
class, an mutual transformation of data and communication processing with the server are processed by
programming done in a traditional language (C#, Java, and Perl, etc.). Here however, we examine the construction
of the Web Service based on ET (Equivalent Transformation).

Key-Words: - ET, ET programming, Web Service, WSDL, SOAP, ET Built-In

1 Introduction
In recent years the Internet is rapidly spread to such an
extent that it seems that we cannot live without it. In
this situation we focus on “Web Services”, one of the
technologies that utilize the Internet. The difference
between this and traditional Web sites is that user’s
requests can be automatically processed by the
programs in the Web Service. In the case of a web site,
various actions are carried out by a person. For
example, "Judgment as to whether or not to trust a
party" and "Verification as to whether or not the same
bill has come twice", etc. will be processed
automatically by computer in a Web Service. In other
words, various processing done by humans on the
computer up to this point will be automatically done
by the Web Service. "Web Service" is a new
technology in which not only the person but also the
computer (program) retrieves, discovers, uses, and
integrates various services (system and application)
that exist in WWW [1]. Even though web Service was
described in one sentence as “Technology to cooperate
application”, Web Service is in fact not a single
technology. A Web Service is a combined technology
composed of technologies such as message technology,
security technology, and transaction management
technology, etc., a wide range indeed. However, in the
composition of Web Services there are many
technologies that are still in the process of being
decided on. In addition, where there are two or more
competing technologies it is not yet known which of
them will survive in the end. Web Services technology

is still in the developmental phase. Therefore, the
purpose of this research is to make a frame available as
for this technology in the ET language.
In this paper, a method for the implementation of Web
Services in the programming language ET is proposed.
We examine how to make each ET built-in rules
(built-in predicate) for Service Request and Service
provider that exists in the Web Service, and also how
to achieve Service based on these ET built-in rules.
Also, system SRSET (Service Request System in ET)
of Service Request is constructed.

2 Equivalent Transformation

 Programming Language ET
All programs made in this research are described in
equivalent transformation programming language ET.

2.1 Equivalent Transformation (ET) Theory
Equivalent Transformation (ET) theory is one of the
calculation theories, and a calculation theory by
equivalent transformation [2]. The transformation
process in which some problem prb is changed into
problem prb' with the meaning of prb preserved called
equivalent transformation. That is, when we assume
problem prb meaning to be M(prb) and problem prb'
meaning to be M(prb'), it is shown that the relation is
composed that is M(prb) = M(prb') between prb and
prb'. The calculation in the ET theory is performed by

 1

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp135-140)

mailto:teisei@uva.cims.hokudai.ac.jp
mailto:katou@uva.cims.hokudai.ac.jp
mailto:akama@iic.hokudai.ac.jp

equivalent transformation, and the given problem is
solved by repeated equivalent transformations that
preserve the meaning. This is illustrated in Figure 1.

Figure1. Equivalent Transformation by ET rules

2.2 ET Programming based on Rules
Equivalent transformation programming language ET
is designed based on the framework of the equivalent
transformation calculation by equivalent
transformation (ET) theory. The problem solving and
programming of the ET language by equivalent
transformation are associated as follows [3].
First of all, the problem to be solved is given by the
definite clause (set) that defines the problem
specification that describes the nature of the problem
(condition and processing, etc. necessary for the
problem solving). To solve the given problem by the
definite clause, we simplify the problem by equivalent
transformation. The information about the method of
the equivalent transformation operation was described
by ET rules. Information about the method of the
operation for the atom of the clause to be transformed
is "What transformation (simplification) is given when
which atom satisfies what requirements".
Generally, to solve a problem to one or more
simplifications by equivalent transformation is
necessary, and information about all necessary
equivalent transformation operations for the solution
(ET rules) is a necessity. Necessary ET rules for this
problem solving is assumed to be r, and all sets of r is
assumed to be R. R is sets of ET rules, and it can be
regarded as the programming that will solve the
problem. That is to say, what is called programming in
the ET theory is the description of the necessary ET
rules for solving the problem. An ET program consists
only of the ET rules, and the calculation by the ET

rules, the cause equivalent transformation is assumed
to be valid and efficient.
When ET rules are repeatedly applied to a problem
until no further simplification is possible, whatever
remains is the solution to that problem. This is
illustrated in Figure 2.

Figure2.Problem solving by equivalent transformation

The ET Programming language has the following
features.
・ It is a programming language due to the rules

based on the theory of equivalent transformation.
・ Two methods(S type and R type) for describing

the rules exist.
・ D rule (D is the initial of Deterministic) and N rule

(N is the initial of Nondeterministic) exist.
・ In the application of N rules, the selection of the

transformation object clause, the transformation
object atom, and the application rules is arbitrary.

The programming in this paper is constructed with D
rule. D rule is described as follows.
(as <Head atom> < Cond atom-list> : < Body
atom-list>)

3 Analysis of Web Service
A Web Service is a software system designed to
support interoperable machine-to-machine interaction
over a network. It has an interface described in a
machine-processable format (specifically WSDL).
Other systems interact with the Web Service in a
manner prescribed by its description using SOAP
messages; typically conveyed using HTTP with an
XML serialization in conjunction with other
Web-related standards [4].The whole image of the Web
Service is shown in Figure 3.

 2

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp135-140)

Figure3. The whole image of Web Service

3.1 SOAP message
In a Web Service, one side is specified to be used and
the other side is specified to be offered. The used side
is called the called Service Request and the offered
side is called the Service Provider. The relation of the
communication between Service Request to Service
Provider is shown in Figure 4.

Figure4. Relation of the communication between
Service Request and Service Provider

The key to achieving the service shown in Figure 4 is
the exchanging of Soap messages. Therefore, it is
essential that the necessary information that composes
the SOAP message be obtained.

3.2 Relation of SOAP message to WSDL
A SOAP message is composed of an XML form. Its
structure is illustrated in Figure 5.

Figure5. The structure of a SOAP message

We can establish the relationship between a SOAP
message and WSDL by looking at the structure of
WSDL document. This structure is shown in Figure 6.

Figure6. The relation of a soap message to WSDL

As a result, by making a SOAP message from WSDL
it becomes possible to implement a simple Web
Service. The Service Request and Service Provider of
the Web Service can now be constructed using ET.

4 Realization of Service Request side
The service Request side consists of the following five
stages.
(1) Information on the available Web Service is

obtained (from web page and WSDL etc.)
(2) An appropriate SOAP message is made for the

available Web Service.
(3) Necessary information of the made SOAP message

etc. is added behind the URL of the available
Web Service.

(4) Transmission of made data
(5) Display of information received in the reply.

 3

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp135-140)

Built-in rules were then made from this "Outline of the
Service Request side".

Built-in rule wsdl:AcquireInfo can acquire useful
information about the construction of the SOAP
message (tag name, SoapAction, and Service URL,
etc.) from WSDL. For an example, information was
acquired from URL of WSDL that is
http://teachatechie.com/GJTTWebServices/ZipCode.
asmx?WSDL The result is shown in Figure 7.

Figure7. Achievement of information from WSDL

Also, the information can be amended. For example:
<Sertvice: GetLocation --> GetLocationReponse,
Input necessity (condition): Stirng ZipCode, Service
execution example: GetLocation cond1…cond n>. In
other words, it makes the user understand and what
service it is and how to use said service. The user can
input the service tag name and the condition while
consulting the example.
Based on the service name tag and condition inputted
by the user, along with the relevant information from

select the service generate the SOAP message
automatically, send the SOAP message to the s
and then report reply the service results to the user.
Service Request System- SRSET (Service Request

WSDL, the built-in rule soap:InvokeWebService can

erver,

-in System in ET) was constructed based on these built
rules. The interface is shown in Figure 8.

Figure8. The interface of SRSET

5 Realization of Service Provider side

s the data from Service Request side.

(2) N rmation) is pulled out from the

(3) C cessing).
ge.

 "Outline of the

The Service Provider side consists of the following
five stages.
(1) Receive

(SOAP message)
ecessary data (info
received data (SOAP message).
omputation based on the data (pro

(4) Use the acquired data to make a SOAP messa
(5) Reply to the Service Request side.
Built-in rules were then made from this
Service Provider side".

1. Built-in rules that acquired Information from WSDL
Rules name: wsdl:AcquireInfo
Shape of rules: (wsdl:AcquireInfo *wurl *result_usr *info *soapAction *surl)
Explanation of argument:
*wurl: URL of WSDL
*result_usr: Information that displayed to user
*info: Information on necessary condition in soap body
*soapAction: URL of soapAction
*surl: URL of Web Service

2. Built-in rules that connects with Web server, and receives result of service
Rules name: soap:InvokeWebService
Shape of rules: (soap:InvokeWebService *tag_value *info *soapAction *surl
*service)
Explanation of argument:
* tag_value: Service tag name and value that user inputted
*info: Information on necessary condition in soap body
*soapAction: URL of soapAction
*surl: URL of Web Service
*service: Reply result from service provider

Built-in rules for Service Request

 4

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp135-140)

http://teachatechie.com/GJTTWebServices/ZipCode.asmx?WSDL
http://teachatechie.com/GJTTWebServices/ZipCode.asmx?WSDL

As an example, the Web Service determines whether
the given value (integer) is a prime number or not. If it
is a prime number then TRUE is returned, otherwise a
Web Service that returns FALSE is constructed.

The Soap message cannot be generated from WSDL
because WSDL is not automatically generable and

does not exist. The SOAP message has to be prepared.
The Soap message is transmitted to Service Provider
when executing it by ETI [5] and the result of the reply
is shown as follows.

6 Conclusion
In this paper, we proposed a method for implementing
a Web Service in the equivalent transformation
programming language ET. Also, we did actual
experimentation on the provision and use of the Web
Service by making the proposed Web Service and
built-in rules (built-in predicate) for the ET program
creation. In addition, Service Request System- SRSET
(Service Request System in ET) was constructed.
We will make the mechanism for the automatic
generation of WSDL document in the Service
Provider in the future. Also, taking OWLS into
consideration, we plan to construct more complex
Web Services.

References:
[1]http://www.atmarkit.co.jp/fxml/tanpatsu/21websv

c/websvc01.html
[2] Kiyoshi Akama etc., A Class of Rewriting Rules and

Reverse Transformation for Rules-Based Equivalent
Transformation, Electronic Notes in Theoretical
Computer Science, 59 No.4 pp.1—16, 2001.

[3] K.Akama, H.Koike and H.Mabuchi, A Theoretical
Foundation of Program Synthesis by Equivalent

[D]>(main 3)
-------------------------D execution ---------------------
((soap:Envelope (xmlns:xsi "http://www.w3.org/2001/XMLSc
hema-instance") (xmlns:xsd "http://www.w3.org/2001/XMLSc
hema") (xmlns:soap "http://schemas.xmlsoap.org/soap/enve
lope/")) ((soap:Body) ((PrimeResponse (xmlns "http://fox
19.hucc.hokudai.ac.jp/webs/eti-bin/webservices/primes"))
((PrimeResult) (dd:content "TRUE")))))
Answer = TRUE
--
succeeded.
(main 3)
execution time: 213 [msec]
[D]>(main 20)
-------------------------D execution ---------------------
((soap:Envelope (xmlns:xsi "http://www.w3.org/2001/XMLSc
hema-instance") (xmlns:xsd "http://www.w3.org/2001/XMLSc
hema") (xmlns:soap "http://schemas.xmlsoap.org/soap/enve
lope/")) ((soap:Body) ((PrimeResponse (xmlns "http://fox
19.hucc.hokudai.ac.jp/webs/eti-bin/webservices/primes"))
((PrimeResult) (dd:content "FALSE")))))
Answer = FALSE
--
succeeded.
(main 20)
execution time: 213 [msec]

Result from Service Provider

?- (chdir "C:/webs/eti-bin/webservices/primes").
// 1. loading built-in file
?- (loadModule "./dll/providerblt.dll" ?) .
(as (main)
// 2. Build-in rules soap:decodeData
(soap:decodeData *message)
:
// 3. Build-in rules soap:selectData
(soap:selectData *message ((soap:Body) (Prime (xmlns
"http://fox19.hucc.hokudai.ac.jp/webs/eti-bin/
webservices/primes")) (Element) dd:content) *data)
(atoi *data *Data)
// 4. judged whether it is a prime number
(Prime *Data *Ans)
// 5. Build-in rules soap:makeMassage
(soap:makeMassage (*Ans) "Prime" *return))
//---//
//Rules Prime
// Program that judges whether given positive integer is prime number
(as (Prime *N *Ans) (Prime *N) : (= *Ans "TRUE"))
(as (Prime *N *Ans) (not (Prime *N)) : (= *Ans "FALSE"))
(as (Prime 1) : (false))
(as (Prime *N) (> *N 1) : (:= *N1 (- *N 1)) (Prime2 *N *N1))
(as (Prime2 *N 1))
(as (Prime2 *N *N1)
(> *N1 1)
(:= 0 (mod *N *N1))
: (false))
(as (Prime2 *N *N1) : (:= *N2 (- *N1 1)) (Prime2 *N *N2))
?- (rebuildRuless)(main) .
?- q .

Building of Service Provider

1. Built-in rules that receives transmitted message
Rules name: soap:decodeData
Shape of rules: (soap:decodeData *Mess)
Explanation of argument:
*Mess: Data that has been transmitted (SOAP message)

2. Built-in rules that pulls out necessary data from SOAP message
Rules name: soap:selectData
Shape of rules: (soap:selectData *Mess *pathList *data)
Explanation of argument:
* Mess: SOAP message
*pathList: Passing to data that wants to be pulled out
*data: Data that has been pulled out

3. Built-in rules that converts processing result into SOAP message,

and replies
Rules name: soap:makeMessage
Shape of rules: (soap:makeMessage *Ans *Name *return)
Explanation of argument:
* Ans: Result of processing (list)
*Name: Name of Web Service (String)
*return: Message of replies (SOAP message)

Built-in rules for Service Provider

 5

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp135-140)

http://www.atmarkit.co.jp/fxml/tanpatsu/21websvc/websvc01.html
http://www.atmarkit.co.jp/fxml/tanpatsu/21websvc/websvc01.html

Transformation, Perspectives of System Informatics,
Lecture Notes in Computer Science, Vol. 2244,
Springer Verlag, Heidelberg, 2001, pp. 131-139.

[4] W3C Web Services Architecture Working Group Note,
http://www.w3.org/TR/2004/NOTE-ws-arch-2004
0211/, 11 February 2004.

[5] ETI (Equivalent Transformation rule Interpreter).
http://assam.cims.hokudai.ac.jp/eti/
http://assam.cims.hokudai.ac.jp/et/indexj.html
(Japanese Edition)

.

 6

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp135-140)

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://assam.cims.hokudai.ac.jp/eti/
http://assam.cims.hokudai.ac.jp/et/indexj.html

