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Abstract: - Controller design strategy for Takagi-Sugeno (T-S) fuzzy systems is considered in the 
two-degree-of-freedom (TDOF) framework. Firstly, coprime factorization described in the state space formulas 
for T-S fuzzy systems is introduced based on a common Lyapunov function. Secondly, based on this coprime 
factorization, TDOF framework for LTI systems is extended to be applied to T-S fuzzy systems. Consequently, 
good tracking performance and good disturbance rejection (and robustness) are compatibly achieved by a 
feedforward controller and a feedback controller, respectively. Furthermore, each controller design problem can be 
formulated with dynamic parallel distributed compensation in terms of linear matrix inequality related to L2 gain 
performance.  
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1   Introduction 
Takagi-Sugeno (T-S) fuzzy systems can be formalized 
from a large class of nonlinear systems [1,2]. Despite 
the fact that the global T-S model is nonlinear due to 
the dependence of the membership functions on the 
fuzzy variables, it has a special formulation, known as 
Polytopic Linear Differential Inclusions (PLDI) [3], in 
which the coefficients are normalized membership 
functions. That is, local dynamics in different 
state-space regions are represented by linear models; 
and the nonlinear system is approximated by the 
overall fuzzy linear models.  

Most of the existing control techniques for T-S 
model utilized the parallel distributed compensation 
(PDC) law [4]. With quadratic Lyapunov functions 
and PDC law, a great deal of attention has been 
focused on analysis and synthesis of these systems 
[4-9]. In particular, in [9] sufficient linear matrix 
inequality (LMI) conditions are provided for the 
existence of a quadratically stabilizing dynamic 
compensator or the performance-oriented controller 
based on the notion of dynamic parallel distributed 
compensator (DPDC).  

 On the other hand, two-degree-of-freedom 
(TDOF) control scheme is fundamental strategy for 
design of linear time invariant (LTI) systems to deal 
with both command tracking and disturbance rejection 

independently [10-13]. It is noted that not only control 
performance but also controller structures can be 
independently treated in TDOF framework. To the 
authors’ knowledge, however, general TDOF control 
scheme including command tracking issue of T-S 
fuzzy systems has not been discussed explicitly. As for 
T-S fuzzy systems, it is no use treating transfer 
functions or eigenvalues of state matrices, thus, the  
TDOF methodology for LTI systems can not be 
applied to T-S fuzzy systems straightforwardly. 

In the present paper, we extend TDOF control 
framework for LTI systems to be applied to T-S fuzzy 
systems. Firstly, coprime factorization for T-S fuzzy 
systems is described in state space formulas based on a 
common Lyapunov function. Secondly, TDOF control 
framework for T-S fuzzy systems is presented based 
on this coprime factorization. Then two-step controller 
design approach is proposed. First, a feedforward T-S 
fuzzy controller that achieves good tracking 
performance is designed by model matching strategy 
with L2 gain performance. Second, a feedback 
controller that rejects disturbances and/or model 
uncertainties and does not affect tracking performance 
is designed with another L2 gain performance. Each 
controller design problem can be formulated with  
dynamic parallel distributed compensation in terms of 
linear matrix inequality expressions [14]. 
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2   Preliminaries 
In this section, firstly notations regarding T-S fuzzy 
systems are introduced. And then, definition of 
coprime factorization for T-S fuzzy systems is newly 
introduced . L2 gain performance with L2-norm is also 
recapped. 
 
Definition 1 [9]. 
The T-S fuzzy model G  consists of a finite set of 
fuzzy IF-THEN rules. Each rule has the following 
form: 

Dynamic part: 
Rule 1,2, ,i r= L : 

IF )(1 tz  is 1,iM L  and )(tz p  is ipM ,  
THEN )()()( tuBtxAtx ii +=&  

Output part: 
Rule 1,2, ,i r= L :  

IF )(1 tz  is 1,iM L  and )(tz p  is ipM ,  

THEN )()( txCty i=  

Each variable )(tzi  is a known parameter that is a 
function of the state variables ( )x t , external 
disturbances, and/or time. The symbols ijM  represent 
membership functions for fuzzy sets.  

Using the center of gravity method for 
defuzzification, we can express the aggregated fuzzy 
model ( )G z  as: 
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Here, z  denotes the vector containing all the 
individual parameters )(tzi . The ( )ih z  is the 
normalized possibility for the ith rule to fire given by 
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Where, possibility for the ith rule to fire: ( )iw z  is 
given by the product of all the membership functions 
associated with the ith rule as: 
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We will assume that at least one ( )iw z  is always 

nonzero so that ( )
1

0
r

i j
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≠∑ . It is noted that the 

normalized possibility ( )ih z  satisfies  conditions 
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Definition 2. 
The T-S fuzzy plant ( )G z  is said to have doubly 
coprime factorization if there exit right coprime 
factorization 1( ) ( ) ( )G z N z D z −=  and left coprime 
factorization 1( ) ( ) ( )G z D z N z−= % % , where a set of 
realizations for stable T-S fuzzy systems 

( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( )N z D z N z D z U z V z U z  and ( )V z  
can be chosen such that 

( ) ( ) 0( ) ( )
( ) ( ) 0( ) ( )

D z U z IV z U z
N z V z IN z D z

  −   
=     −     

% %

% %
  (4) 

A particular set of realizations can be chosen such that 
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in which F  and L  are chosen such that both 
i iA B F−  and i iA LC−  are quadratically stable. That 

is, 1
1F VP−= −  and 1

2L P W−= −  should satisfy the 
following LMIs, respectively: 

1 0P > ; 

1 1 0,T T T
i i i iP A A P BV V B+ + + < 1,2,i r= L  (7) 

and 
2 0P > ; 

2 2 0T T T
i i i iA P P A WC C W+ + + < , 1,2,i r= L  (8) 

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp87-92)



 
Definition 3. 
The control system satisfying the property 

2

2

0, 2

sup
a a

b
a

γ
≠ <∞

<  is said to have L2 gain performance 

with the bound γ  related to signals a  and b , where 

2 0
( ) ( )Tc c t c t dt

∞
= ∫  is the L2-norm of the signal c .  

 
 
3 TDOF controller design for T-S fuzzy 
plants 
In this section, first, conventional TDOF control 
structure of LTI system will be extended to T-S fuzzy 
system using doubly coprime factorization of an T-S 
fuzzy plant. It is well known that LTI feedback control 
systems can be constructed as figure 1., where 
signals r , u , d  and y  denote reference inputs, 
control inputs, output disturbances, controlled outputs, 
respectively. Both 1ffK  and 2ffK  are LTI 
feedforward controllers, fbK  denotes an LTI feedback 
controller and G  is a LTI plant. 

 

+ 

d  
u  y  r  

_ 

1ffK  

2ffK  

fbK  

G  

 
Fig.1. Configuration of general LTI control systems 

 
In this configuration, if 1ffK  is set to be zero 

matrix and 2ffK  is set to be unit matrix, then Fig.1 
shows an One-Degree-Of-Freedom (ODOF) control 
system. Otherwise, Fig.1 represents a TDOF control 
system; and particularly if 1ffK  is set to be f fD K⋅  and 

2ffK  is set to be f fN K⋅ , where D  and N  are right 
and left factor of right coprime factorization of the 
plant, then feedback and feedforward controllers can 
be designed independently. This TDOF configuration 
of LTI system can be easily extended to T-S fuzzy 
system with doubly coprime factorization of the T-S 
fuzzy plant introduced in section 2. In Fig.2, 
controlled output can be obtained as 

1( ) ( ) ( ( ) ( ))ff fby N z K z r I G z K z d−= + +   (9) 

Thus, tracking performance and disturbance 
rejection (and also robustness against model 
uncertainties) are independently achieved by a 
feedforward controller: ( )ffK z  and a feedback 
controller: ( )fbK z , respectively. 
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Fig.2. TDOF structure for T-S fuzzy plants 

 
On the other hand, in linear fractional 

transformation described by Fig.3, it has been 
proposed to designing T-S fuzzy output-feedback 
controller: ( )K z obtaining internal stability and 
guaranteeing L2 gain bound for augmented plant: ( )P z  
[9]. 

 
v  

f

w

( )K z  g  

( )P z  

 
Fig.3. LFT configuration of T-S fuzzy control systems 

 
Consequently, the design of each T-S fuzzy 

controller ( )ffK z  and ( )fbK z  can be reduced to 
design of each T-S fuzzy controller ( )K z , by 
considering respective plant ( )P z  including fuzzy 
plant ( )G z . 
      In the rest of this section, two-step controller 
design approach is introduced. First, a feedforward 
controller: ( )ffK z  that achieves good tracking 
performance is designed by model matching strategy 
with L2 gain performance for augumented plant ( )P z  
related to ( )ffK z . Second, feedback controller: 

( )fbK z  that rejects disturbances or model 
uncertainties while does not affect tracking 
performance is designed with another L2 gain 
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performance and another augumented plant 
( )P z related to ( )fbK z . Each controller design 

problem can be formulated in terms of linear matrix 
inequality expression. In the following text, we will 
omit the dependent parameter z  for the simplicity. 
 
 
3.1 Feedforward configuration 
As for T-S fuzzy system, it is no use treating transfer 
functions or eigenvalues to test the stability. Thus, 
approximation of transfer functions can not be applied 
to solve command tracking problem. Instead, we treat 
output error between target signal and controlled 
output. Accordingly, the augmented plant ffP for 
tracking problem can be constructed as shown in Fig. 
4 with reference model: T  and a weighting function: 

rW . LTI reference model and weighting function are 
also available, besides the latter can be omitted. 

 
 

wr  u

er  _ 
y  

N  

ffP  

ffK  

T  

rW  
+ 

 
Fig.4. LFT configuration regarding command tracking 

problem 
 

According to Fig.4, the augmented plant holds the 
relation as 

0
r

ff
w r

e TW Nr r
P

r Wu u
      
      

     

−
= =  (10) 

and is derived with the state space realization of 
wr wr

r
wr wr

A B
W

C D
 
 
  

and t t

t t

A B
T

C D
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1
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t tr
i i i iff i

wr wr t i wr t

wr wr

A B C B D
A B

P h A B F B
C D C C D D
C D

=

 
 
 
 
 
 
 
 
 
  

− −∑

 (11) 
Consequently, the design problem of the 

feedforward controller ffK  obtaining L2 gain 

performance related to r and e is formulated in terms 
of linear matrix inequality mentioned later in 
subsection 3.3. It should be noted that ffK  itself is a 
stable controller. 

 
 

3.2 Feedback configuration  
Standard T-S fuzzy control methodology can also be 
applied to the design of a feedback controller: fbK . In 
this case, the augmented plant is constructed as shown 
in Fig. 5 with a weighting function: dW . 

 

u y  

_ 

d  

G

fbK

dW  
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Fig.5. LFT configuration regarding disturbance 

rejection problem 
 

According to Fig.5, the augmented plant holds the 
relation as 

d d
fb

z W W Gd d
P

y I Gu u
      
      

      

−
= =

−
  (12) 

and is derived with the state space realization of 
wd wd

d
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1
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iwd wd wd
r i i

ifb i iwd wd wd
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P h
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−∑  (13) 

Likewise the design of ffK , the design problem of 

fbK  obtaining L2 gain performance related to d and z 
can also be formulated in terms of linear matrix 
inequality. 
 
 
3.3 Controller construction 
Both augmented plants: ffP  as shown (11) and fbP  as 
shown (13)  have the following formulation: 
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A unified systematic scheme for designing dynamic 
feedback controllers for the plant (14) has been 
presented to assure both internal stability and L2 gain 
performance according to theorem 8 of [9]. The 
control laws are in the form of so-called dynamic 
parallel distributed compensation (DPDC). Moreover, 
controller design scheme has been formulated by 
solving the sufficient LMI conditions.  

The T-S fuzzy controller ffK  and fbK  regarding 
respectively ffP  and fbP  can be derived as follows. 

1 1 1

1

1 ( )2
r r r

ij j i i
i j k k i k

i j j

r
i

i k k
i

K

hh A A hB

hC D

= = =

=

 
 +
 
 
 
 
   

∑∑ ∑

∑
 (15) 

where , ,i j i i
k k kA B C  and i

kD  can be written as  
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ˆ ˆˆ, , , , ,i j i j i iQ P T A B C  and D̂  satisfies the 

following LMI conditions 
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 4   Conclusions 
We have developed two-step nonlinear dynamic 
controller design strategy for T-S fuzzy plant in 
TDOF framework. The first step is to design a 
feedforward controller that achieves good tracking 
performance by model matching strategy with L2 gain 
performance. The second step is to design a feedback 
controller that rejects disturbances while does not 
affect tracking performance with another L2 gain 
performance. Each controller design problem is 
formulated in terms of linear matrix inequality and 
both problems can be solved by DPDC methodology. 
    Concerning feedback controllers, it is well known 
that all proper stabilizing controllers are 
parameterized in terms of arbitrary Q RH ∞∈  for LTI 
control system. The configuration of TDOF control 
system is deeply considered with the Q-parameter and 
its consequences － sophisticated design framework 
has been developed. In the present paper, we have 
newly developed general TDOF control scheme for 
T-S fuzzy system, however, we just focused on L2 
gain performance to design controllers. The 
Q-parameter approach will give us more practical 
validity to deduce the solution and covers more 
general control system designs including 
multi-objective and/or switching system for T-S fuzzy 
plants. Based on our results, Q-parameter approach 
can be applicable to T-S fuzzy control system and it 
will be treated in another paper. 
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