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Abstract: This note tackles the problem of designing a state-feedback stabilizer of systems not

only with input saturation but also with measurement quantization. Since quantization errors

are Loo-norm bounded, one can describe a ball of origin, rather than an origin, which the state

converges. The proposed design method employs two stages: in the first stage, the achievable

minimal ball of origin is designed and, in the second stage, the maximal invariant set of initial

states is designed.
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1 Introduction

The problem of stabilizing systems either
with input saturation or with quantization er-
ror has recently received considerable attention
in control societies since such two constraints
are frequently encountered in control engineer-
ing applications [1]-[10]. Quantization error,
similar to system disturbance, occurs in the
procedure of converting a real-valued measure-
ment signal into a piecewise constant one tak-
ing on a finite set of values. And input sat-
uration occurs in areas where required control
actions exceed the threshold of actuator supply.

In [6], T. Hu and Z. Lin described the method
of using convex approach for solving saturation
nonlinearity. Based on the method, Hu and Lin
and Hu et al. [7] performed the analysis and
design of control systems with the ability of re-
jecting disturbances bounded in magnitude. In
[10], Fang at el. extended the work of Hu et
al. to the systems with disturbances bounded
in energy, so-called Lo-disturbances, and pro-
duced less conservative results than those of [1]

by increasing the degree of freedom for design.

In [4], R. W. Brockett and D. Liberzon pro-
posed a control design methodology in the con-
text of feedback stabilization problem for lin-
ear control system with quantization. In [8],
D. Liberzon generalized the contribution of [4]
by handling the quantized feedback stabiliza-
tion problem for nonlinear systems and devel-
oping results for systems with input quantiza-
tion, both linear and nonlinear. In [9], H. Ishii
and B. A. francis established means to find an
upper bound on the data rate to achieve stabi-
lization.

In the case where both the saturation and
the quantization error occur at the same time
in the stabilization process, one need to incor-
porate simultaneously the effects of these into
the design of a control system. However, to the
best of our knowledge, there has been yet no re-
sults on designing a state-feedback stabilizer for
systems both with input saturation and with
quantization error. Thus, in this paper, we
shall propose the method of constructing such a

stabilizer. To this end, we develop two nested



invariant regions such that all trajectories of
systems starting in the bigger region approach
the smaller one, while no further convergence
occurs. Specifically, we obtain the conditions
for the existence of two nested invariant regions
through two stages: in the first stage, the con-
dition for minimizing a ball of origin is pre-
sented, and in the second stage, the condition
for maximizing the invariant ellipsoidal set of
initial states is presented based on the ball of
origin. Since the conditions are formulated in
terms of nonlinear matrix inequalities, we shall
propose an efficient iterative algorithm involv-
ing convex optimization in order to solve these
nonlinear matrix inequalities.

The paper follows this outline. Section 2 will

describe a problem and define several concepts
including a ball of origin, an invariant set of
initial states, and so on. Sections 3 and 4 will
show how to design the minimal ball of ori-
gin and how to construct the maximal invari-
ant set of initial states, respectively. Section 5
will show a simple example for verification of
the resulting system.
Notation: Notations in this paper are fairly
standard. L denotes the space of bounded
vector sequences u(k), equipped with the norm
||u]|oo = sup;{supy, |ui(k)|}. The notation X >
Y and X > Y where X and Y are symmetric
matrices means that X — Y is positive semi-
definite and positive definite, respectively.

2 Problem Formulation

Consider the following continuous-time sys-
tem of the form

Ax(t) + Bu(t),
sat(K quan(z(t))),

(1)
(2)

where x € R"™ and u € R™ denote the state
and the control input, respectively, quan(-) de-
notes a quantization operator, called quantizer,
with the sensitivity € and sat(-) denotes a satu-
ration operator with level . Here, we assume
that the saturation effect of the quantizer can
be ignored. In other words, the quantization
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operator quan(-) yields

(quan (0)); £ 2¢[oi/(2€)], (3)

where [-] for a scalar is an integer round-off op-
erator and o; denotes the i-th element of o.
And the saturation operator sat(-) yields

(4)

where p is the saturation level and sign(-) re-

(sat (0)); £ sign(oy) min(u, o)),

turns the signs of the corresponding argument.
In this case, one can find the following relations
for two operators:

quan (z) € {z+q| —e<q; <€, j€[l,n]},
sat (z) € Co{ Dz + D;w | i € [1,2™] },
where w € R™ is an auxiliary vector yielding
|w;| < u, € indicates the sensitivity of the quan-

tizer, D; denotes a diagonal matrix with all
possible combinations of “1” and “0” entries,

and D, 27— D;. Using two relations, we can
get the following

sat(Kquan(z)) € Co{ D;K(z +q) + D; w |
—e<gi<e jellin) ie[l,2"] ), (5)

where w is a vector yielding |w;| < pu.

Gjuon (o3l

Figure 1: Uniform quantization: (quan(z));

The closed-loop system can be described as

(6)

Since, the trajectories of the system under the

&(t) = Az(t) + B sat(K quan(z(t))).

memoryless quantizer (3) can never converge
to the origin, we shall obtain two nested in-
variant regions such that all trajectories of sys-
tems starting in the bigger region approach the
smaller one, while no further convergence oc-
curs.
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3 Minimizing A Ball of Origin

A ball of origin Bp, is a region where the
state remains independently from the quanti-
zation errors: for all ¢ > 0

a:(t)equé{xER" ‘ acTan:<1}. (7)
For Lyapunov function V(z(t)) = 2T (t) Pz (t),

V =227 (t)P, {Az(t) + B sat(K, quan(z(t)))}
< ETr(A){1 — 2T (t) Py (t)}

if the following inequality holds that, for all
i€[l,2™ and j € [1,m],

0 > Qq4;62gr(7/})Pq P,BD;K, ,
KI'DIBTP, A
T
0 < |1 hqg ,
hgj  n
G, = (A+BD;K,+BD; H,)"P,+

P,(A+ BD;K, + BD; H,),

A is a diagonal matrix with positive diagonal
hI hL
q1 qm

modify these inequalities as follows:

entries and H, g = } Let us

o o | Gremwr, BDE,
KIDIBT  —PAP, |’
D LT
0 < By hqg’ ,

hej 1

G, & PAT+KI'D,BT + HI'D; BT +

AP, + BD;K,+ BD; H,,

P, = P Ky=K,P,

gl P T T T

A = PH] = | R .

Unfortunately, the resulting condition is not
convex. Thus, there needs some trick to handle
this non-convexity. One of the most attractive
relaxation methods is based on iteration, for
which we shall use the modified inequalities:

for all i € [1,2™] and j € [1,m]

0> El(anananMaA7 sz)
Gy + E2Tr(A)M

= K] DI'BT
0
BD;K, 0
~NP,— P,NT N |, (8)
NT —A
_ A | P, AL
0<Lo(Pyyhgrg) = | % 4 [, (9
hqj 1

0< L3(P, M) 2 M- P, (10)

Proposition 3.1 Procedure to minimize
the ball of origin: (Initialization) Deter-
mine the initial values of N, A, and P, yielding
(8)-(10): put N =1 and A = I; then

(i) Minimize o subject to ol > L1, 0 < Lo
and O < L3 for fited N and A, and then
fix ]5q and M from the feasible entries of
the procedure above.

(i1) Minimize o subject to ol > L1 and 0 < Lg

for fized Py and M.

(it) If a > 0, replace the values Npre and Apye

with the entries computed above and repeat

the procedure. Otherwise, put Nijpyy = N,

ANinit = A, and P%imt = ]5q from the pre-

vious procedure and skip to the following

3-phase procedure.

(3-Phase Iteration) Put N = Ny, A =
Ainit, and Pq,pre = Pqﬂ‘m‘t'
(i) Minimize the trace of P, subject to (8)-
(10) for fized N and A.

(ii) Minimize the trace of M subject to (8)-
(10) for fized Py and A.

(iii) Minimize the trace of P, subject to (8)-
(10) for fized N and M.

(iv) If | Py — Py pre| < p =0, stop the procedure;

otherwise, assign Py pre = Pq and repeat
the procedure.

(Controller Construction) K, = K,P;". g



4 Maximizing an Invariant Set
of Initial States

We consider an invariant set of initial states,
Ep, such that the state z(t) € Ep converges
into the ball of origin Bp, as t goes to infinity:

5pé{:1:|xTP:1:<1},

(11)

where Ep includes Bp,, i.e. P < P, We

shall use a Lyapunov function V(z(t)) =
2T (t)Px(t), whose derivative satisfies the fol-
lowing condition

V = 22T (t)P {Az(t) + B sat(K quan(z(t)))}
< E@Tr(A)(1 — 2T (t) Pya(t)). (12)

This condition can be achieved via the follow-
ing inequality: for all ¢ € [1,2™] and j € [1,m]

0 G+ eTr(A)P, PBD;K
KTDIBTP —A ’
P KT
0 "1, P<p,
hj n
G £ (A+BDK +BD;H)TP+

P(A+ BD;K + BD; H),

Let us modify the following matrix inequalities:
for all i € [1,2™] and j € [1,m]

0 > G+ efTr(A)PPqP Bl_)lK_'
KTD;BT —PAP |’
p 1T
o< | T M psb,
hj
G & PAT+KTD,BT+ ATD; BT +
AP+ BD;K + BD; H,
P = P YK = KP,
AT = PHT =[] iT,

Since these conditions are also non-convex,
we use the same iterative method as Proposi-
tion 3.1 to maximize the invariant set of initial
states, for which we shall use the modified in-

(iii)
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equalities: for all ¢ € [1,2™] and j € [1,m]

0> L4(P,K,H,A,M,N,i)

G+ eTr(A)M
= KTD;BT
0
BD;K 0
~NP-PNT N |, (13)
NT —A
__ A [P AT
0<Ls(P,h:) = | = 9|, 14
0< Le(P) 2 P-P, (15)
Al P
M,P)2 | - o 1

Proposition 4.1 Procedure to maximize
the invariant set of initial states: (Ini-
tialization) Determine the initial values of N,
A, and P yielding (13)-(16): put N = I and
A =1; then

(i) Minimize o subject to ol > L4, 0 < L3,
0 < Lg, and 0 < L7 for fired N and A, and
then fix P and M from the feasible entries
of the procedure above.

(i) Minimize o subject to ol > L4, and 0 <

Ls for fized P and M.

If o > 0, replace the values Npre and Apre
with the entries computed above and repeat
the procedure. Otherwise, put Nijpit = N,
Ainit = A, and Py = P from the previous
procedure and skip to the following 3-phase
procedure.

(3-Phase Iteration) Put N = Nijpi, A =
Ainit, and Ppre = Linit-

(i) Minimize the trace of P subject to (13)-
(16) for fized N and A.

(11) Minimize the trace of M subject to (13)-
(16) for fired P and A.

(i4i) Minimize the trace of P subject to (183)-

(16) for fired N and M.



(iv) If |P — Pyre| < p == 0, stop the procedure;
otherwise, assign Ppm = P and repeat the
procedure.

(Controller Construction) K = KP~1. g

For
the system with some initial states in Ep, apply
for u = sat(K quan(z(t))). Once the state z(t)
reaches into the ball of origin Bp,, replace the
control with u = sat(Kyquan(z(t))).
trol strategy guarantees the asymptotical con-
vergence of the state in Ep to the ball of origin
Bp, and also the stay in Bp, after arriving. g

Proposition 4.2 Two-stage Control:

This con-

5 Numerical Example

To demonstrate the performance of the pro-
posed algorithm, let us consider the following

| [2)

Assume that ||z]||c < 10 and the measured

system:
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Figure 2: (a) Minimal ball of origin Bp, and maximal
invariant set of initial states £p, (b) Maximal invariant
sets of initial states for u = 0.5,1, 3.

state z(t) is quantized by 8-bit digital signals.
From the assumption, the quantization level e
is given as ¢ = 10/2%. For the control con-
straint ¢ = 0.5, Fig. 2-(a) shows two nested
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invariant regions obtained from the proposed
iterative algorithm. Fig. 2-(b) shows that the
size of the invariant set £p increases as the con-
trol constraint p increases.

6 Conclusion

In this paper, we proposed the method of
constructing state-feedback stabilization prob-
lems for systems with input saturation and
measurement quantization. The conditions for
the existence of two nested invariant regions
such that all trajectories of systems starting
in the bigger region approach the smaller one,
while no further convergence occurs, are formu-
lated in terms of nonlinear matrix inequalities,
and then an iterative algorithm involving con-
vex optimization is proposed in order to solve

these nonlinear matrix inequalities.
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