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Abstract :- Placement of multiple dies on an MCM substrate is a difficult combinatorial task in which multiple 
criteria need to be considered simultaneously to obtain a true multi-objective optimization. Our design 
methodologies consider multi-objective component placement based on thermal reliability, routing length and chip 
area criteria for multi-chip module. The purpose of the multi-objective optimization placement is to enhance the 
system performance, reliability and reduce the substrate area by obtaining an optimal cost during multi-chip 
module placement design phase. For reliability considerations, the design methodology focuses on the placement of 
the power dissipating chips to achieve uniform thermal distribution. For route-ability consideration, the total wire 
length minimization is estimated by Steiner tree approximation method. For substrate area consideration, the area is 
estimated by minimum area contains all chips.  The cost function is formulated by the weight sum calculation. For 
design flexibility, different weights can be assigned depending on designer’s considerations. Various methods 
including iteration, simulated annealing and generic approximation are applied to solve the placement solutions. An 
auto generated optimal placement layout based on the analytical solution is presented. 
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1. Introduction 
Optimal electronic component placement studies 

have traditionally focused on single objective 
optimization [1,2]. It has mainly used a single objective 
of minimizing the overall wire length or minimizing the 
overall heat generation or minimizing the overall time 
delay in its functioning. Osteman et al. [3] developed a 
force directed placement methodology to solve coupled 
reliability and routability placement procedure for 
arranging electronic components on a convectively 
cooled two-dimensional workspace. Queipo et al. [4] 
introduced a genetic algorithm for the search of optimal 
or near optimal placement solutions on printed wiring 
boards. Deb et al [5] use evolutionary algorithms to 
solve a two-objective optimization problem including 
minimizing the overall wire length and minimizing the 
failure rate of the board. A fuzzy analytical model for 
the optimal component placement on the multichip 
module (MCM) substrate is presented in [6, 7]  

There are many factors to consider in selecting the 
correct MCM package design. In a conventional layout 
flow, placement studies have focused on single 
objective optimization. For instance, placement and 
routing are optimized for timing, with little or no 
consideration for power, routability or signal integrity.  
Some of the important goals for the MCM placement 
designs are:  even heat distribution, minimization of the 
total substrate area, the total routing length, and the 
number of routing layers. Therefore, the design must 
consider the combined cost of the heat dissipation, area, 
routing length … etc., not just each cost in isolation.  

In this paper, we focus on the multi-objective 
placement optimization studies. These objectives are 
routing length, substrate area, and thermal distribution. 
The main design issue addressed is on the multi-
objective optimization placement for reliability, route-
ability and substrate area. The weighted sum approach 
is used to formulate the placement cost function. The 
optimum solutions of the cost function are obtained 
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based on simulated annealing, and generic 
approximation algorithms. The rest of this paper is 
organized as follows. Section 2 provides problem 
formulation. Section 3 explains different solution 
techniques. Section 4 presents experimental results. 
Section 5 concludes our paper. 

 

2. Problem Formulation 
The placement problem can be stated as follows: 

Given a set of modules (cells) M = , a 

set of signals S = , and a set of power 

. Each module  is 

associated with a set of signals , where . 

Also each signal is associated with a set of 
modules , where .  is 

called a signal net. The power set indicates the associate 
power value for the corresponding module in module 
set.  Placement consists of assigning each module 

 to a unique location such that a given cost 
function is optimized and constraints are satisfied.  
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The objective of an multi-chip module (MCM) 
placement is to minimize a weighted sum of some 
optimization criteria subject to constraints on others. 
E.g., if k criteria are considered, the objective is to 
minimize the single-valued cost function 
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for some  j, . Here  is the cost of the 
solution with respect to the i’th criterion. and ’s 
are user-defined weights and bounds, respectively. 
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Three objectives representing the general 
performance of a placement system are considered in 
this study. There are minimizing substrate area, 
minimizing routing length, and minimizing thermal 
gradient. The cost due to these objectives  can be 
defined as follows: 

if

 
a. Substrate Area= area that contains all the dies 
b. Routing length=Entire Steiner tree lengths connect              

all the die  
c. Power cost=Thermal distribution on the entire 

substrate 
The weight sum approach is applied in order to 
combine these three objectives. The optimized solution 

is to obtain a minimum sum of weights of the form 
given as: 

∑
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where are the weighting coefficients representing the 

relative importance of the objectives . It is usually 
assumed that 
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The fuzzy thermal placement algorithm [8] is used to 
estimate the power cost. The average repulsive force 
among the dies can be expressed as the following 
formula: 
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∑

=
NN

ijF
P                                                           (4) 

Where is the repulsive force based on fuzzy Z 

function [7, 8], N is the total number of dies. 
ijF

 

3. Solution Methodology 
The basic consideration to approach the multi-

objective approximation optimize solution is to make 
the final cost as low as possible. Due to different 
purposes and requirements, various weight settings can 
be assigned to the three objectives to calculate the total 
combined cost of thermal, power and area. Various 
methods including iteration, simulated annealing, 
convergence perturbation and genetic algorithm are 
applied to solve the placement solutions. 

Simulated annealing method [9] could escape from 
the local minimum solution to approach the global 
minimum solution. During iteration process, the new 
reading will be always accepted as long as the new 
energy value E becomes smaller. If the value increased, 
then it could be accepted in a certain probability. The 
accepted probability P can be determined from the 
following equation. 

                       (5)   

The temperature is set to high value at the beginning 
such that it could escape from the local minimum 
solution. It then continues to cool down the temperature 
to approach the best solution. The pseudo code of the 
simulated annealing algorithm is listed in Table 1. 

P = exp−(Enext − Ecurrent )
Temperature
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Table 1 Simulated annealing algorithm for MCM 
Placement 

 

 
For iteration technique, the solution methodology 

start to randomly exchange the die position and set a 
loop to approach the optimize solution. With random 
choice of the new position, it is difficult to converge to 
the global minimum solution. If we could randomly 
change the die position at the beginning and then limit 
the new position to the area around previous position, 
then it could be easier to get the better global solution. 
To achieve this goal, we apply small perturbation 
approximation method to limit the area of random 
position. 

The advantage of the simulated annealing method is 
that it can escape from the local minimum. But it would 
not be easy to get the global minimum solution if we 
randomly set the new position. To rapidly get the global 
minimum solution, we set the converging position 
instead of random position. To combine the advantages 
of simulated annealing method and small perturbation 
method, we develop the simulated annealing with small 
perturbation method. It could not only escape the local 
minimum solution in the beginning, but also can fast to 
get closer to the solution. The pseudo code of the 
simulated annealing with small perturbation program is 
listed in Table 2. 

 
 
 

Table 2 Simulated annealing with small perturbation 
algorithm for MCM Placement 

 

  

Simulated_Annealing_with_Small_Perturbation(S0, T0, T1, α, M); 
(*S0 is the initial solution*) 
(*T0 is the initial temperature *) 
(*T1 is the final temperature *) 
(*α is the cooling rate *) 
(*M represents the time until the next parameter update *) 
Begin 
  T=T0; 
  S=S0; 
  repeat 
 Iteration=M; 
   repeat 
     NewS=LimitePosition(M, T); 
     ρH=Cost(NewS)-Cost(S); 
     if ((ρH<0) or (random<e-ρH/T) then S=NewS; 
     Iteration=Iteration+1; 
   until (Iteration=0) 
   T=α x T; 
  until (T<T1) 
End. 

Algorithm Simulated_annealing(S0, T0, T1, α, M); 
(*S0 is the initial solution*) 
(*T0 is the initial temperature *) 
(*T1 is the final temperature *) 
(*α is the cooling rate *) 
(*M represents the time until the next parameter update *) 
Begin 
  T=T0; 
  S=S0; 
  repeat 
 Iteration=M; 
   repeat 
     NewS=RandomPosition(S); 
     ρH=Cost(NewS)-Cost(S); 
     if ((ρH<0) or (random<e-ρH/T) then S=NewS; 
     Iteration=Iteration+1; 
   until (Iteration=0) 
   T=α x T; 
  until (T<T1) 
End. 

The simulation results for random choice of the 
switch position and small perturbation of the chosen 
position is shown on Figure 1, respectively. The blue 
diamonds are random choice of the switch position and 
the red rectangles are small perturbation of the chosen 
position. 
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Figure 1 Comparison with random choice and small   

perturbation method 
 

Generic Algorithm is used to exchange the sequence 
of the die positions including crossover, mutation and 
reproduction [10]. Crossover is an operation where two 
parent sequences exchange parts of their corresponding 
chromosomes. We set two kinds of initial positions to 
be parent chromosomes as shown on Figs 2, 3. The 
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parent chromosome position 1 describes the best power 
dissipation. And the parent chromosome position 2 
describes the smallest area requirement. 

 

Figure 2 Generic parent chromosome position 1 

 

Figure 3 Generic parent chromosome position 2 

For example, two parent sequences (123456) and 
(654321) are selected according to pre-defined 
crossover probabilities. A crossover point is randomly 
selected, and then a new sequence (654123) is created. 
Mutation is an operation that randomly changes the 
sequence. We also use the reproduction to reverse the 
sequence of parent one. The pseudo code of the generic 
algorithm program is listed in Table 3. 

 
4. Experiment Results 

In this section, the simulation results of the multi-
objective component placement are presented. Various 
weighting factors are used to observe the multi-
objective component placement. Depending on the 
values of the selected weighting factor, the placement 
procedure allows the designer to place components for 
optimal reliability, area, or routability. In addition, the 
placement procedure can be used to observe the trade- 
offs relationship among reliability, area, and routability. 

 

. Table 3 Generic Algorithm for MCM Placement 

Algorithm Generic(S0,M0, N0); 
(*S0 is the initial solution*) 
(*N represents the time for chromosome exchange*) 
(*M represents the time for rearrange die position*) 
 
Initialize die position; 
Begin 
For N= 1 to N0 
    S=S0; 
For M=1 to M0 
NewS[1] = Crossover sequence;  
NewS[2] = Crossover sequence; 
NewS[3] = Crossover sequence; 
NewS[4] = Crossover sequence;  
NewS[5] = Crossover sequence; 
NewS[6] = Crossover sequence; 
NewS[7] = Reproduction sequence; 
NewS[8] = Mutation sequence; 
For L=1 to 8  
if (NewS[L] < S) then S=NewS[L]; 
        next L 
next M 
     Rearrange die position; 
next N; 
End. 

 

We set the input condition as shown on Table 4. In this 
case study, there are 20 dies with different length, width 
and power, and three different nets to interconnect these 
chips. Figs 4, 5 shows the results obtained by simulated 
annealing and simulated annealing with small 
perturbation methods for the weighting factors of 
Power : Routing : Area=1:1:2, respectively. In the 
figures, the blue diamonds are the power costs curve, 
the purple rectangles are the routing costs curve, the 
green triangles are the area costs curve and the red Xs 
denote the total costs curve. The horizontal axis 
represents the simulation time, and the vertical axis 
represents the normalized total cost value. The 
traditional loop iteration method applied in this case 
study cannot always reach the global minimum 
solutions. However, with simulate annealing method, it 
can obtain the approximation global minimum solution. 
The solution with loop iteration with small perturbation 
method will be more close to the minimum solution.  
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Table 4 Input condition for program simulation 

Length Width Power Net1 Net2 Net3

10 10 1 V

10 20 1 V

10 30 1 V

10 40 1 V

10 50 1 V

10 60 1 V

10 70 1 V

10 80 1 V V

10 90 1 V V

10 100 1 V V

50 50 5 V V

20 10 1 V

30 10 1 V

40 10 1 V

50 10 1 V

60 10 1 V

70 10 1 V

80 10 1 V

90 10 1 V

100 10 1 V  
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Figure 4 Results of simulated annealing method 
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Figure 5 Results of simulated annealing with small 
purturbation 

Figs 6, 7, 8, 9 show the results of auto generated 
optimal placements layout based on the analytical 
solutions for weighting factors to 1:0:0, 0:1:0, 0:0:1 and 
1:1:1.  

 

Figure 6 Auto generated optimal placement layout with 
power:routing:area=1:0:0 

 

 

Figure 7 Auto generated optimal placement with 
power:routing:area=0:1:0 

 

 

Figure 8 Auto generated optimal placement layout with 
power:routing:area=0:0:1 

 

 

Figure 9 Auto generated optimal placement layout with 
power:routing:area=1:1:1 
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The final costs for these four different weighting factors 
are summarized on Table 5.  

Table 5 Summary of four different weight settings 
 

Power Wire Area PowerCost WireCost AreaCost TotalCost

0 0 100 0.33 0.53 0.03 0.89

0 100 0 0.40 0.07 0.35 0.82

33 33 33 0.26 0.18 0.10 0.54

100 0 0 0.04 0.99 0.99 2.02

 

The simulation results obtained from generic 
algorithm for power, wire, area, and total cost under 
various weighting assignment are shown in Figure 10.  
As shown in the power cost figure, when the power 
weighting factor is higher, then the final power cost 
becomes lower. The area and wire cost figures have the 
similar effect. Note that power and area weight settings 
have the opposite effects on cost evaluation.  
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Figure 10 Generic method with different weight settings 
 
5. Conclusions 

In this paper, we formulated the multi-object cost 
function for MCM evaluation. The objective function of 
the optimization problem consists of cost estimates for 
power dissipation, routing length, and substrate area. 
Depending on the selected weighting factor, different 
placement configurations based on simulated annealing 
approach and generic algorithm can be obtained. An 
auto generated optimal placement layout based on the 
analytical solutions can help designers to make trade-
offs among multi-objective selections for MCM design 
considerations. 
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