
Supporting Software Design based on Comments in Codes

Tetsuya Yoshida
Hokkaido University

Graduate School of Information Science and Technology
N-14, W-9, Sapporo, Hokkaido 060-0814

JAPAN

Abstract: This paper proposes a method for supporting software design based on comments which are usually
inserted into a source code. It is believed that a software designer often leaves hints or clues with respect to the
rationale for each module or software component as comments when he/she designs and implements software as a
source code. Comments in the source code are utilized for organizing the pieces of the codes into a tree structure
so that the overall structure of the code can be explicitly represented. Case based support is then invoked for
enabling the effective reuse of other software (source codes) based on the constructed structure for the source code,
especially at the upper process in software design. A prototype system with the method has been implemented on a
personal computer with Java language, and experiments were conducted to investigate its effectiveness. The results
indicate the effectiveness of the proposed approach.

Key–Words: Software Design Support, Comment, Design Rationale, Case Based Approach, Interactive Support

1 Introduction

In contrast to the rapid performance improvement
in hardware, it has often been pointed out that per-
formance improvement in software design is rather
marginal. To tackle this issue, various research efforts
have been conducted to improve the productivity of
software design. For instance, besides the widely used
sequential computation in von Neumann model, one
branch of research fields tries to pursue other com-
putation models. Functional computation model [1]
treats a program as a set of function definitions, and
conducts computation by calculating the value of the
functions. Logic programming model treats a pro-
gram as a set of logical formulas [9]. Removing side
effects, which are utilized to conduct computation in
Von Neumann model, enables to make computer pro-
grams simple and easy to debug, and thus contributes
to improving the productivity of software design. As
another research effort, component-ware [7, 10] has
been pursued to make software components replace-
able and pluggable with respect to software architec-
ture. Component-ware also contributes to improving
the productivity of software design since it facilitates
the reuse of established software components.

As for software design support, many support
tools have been developed and provided. For in-
stance, a lot of CASE (Computer Aided Software
Engineering) tools are available and widely utilized.
These tools mainly focus on automating routine works

within the framework of visual programming by pro-
viding easy to use GUI (Graphical User Interface)
interfaces [2]. These tools are useful for semi-
automated code insertion/completion and debugging,
and thus software design at the lower process can be
supported. However, compared with the support for
the lower process, decision making at the upper pro-
cess in software design has not been well supported
yet. Decision making at the upper stream is also im-
portant since it greatly affects the overall structure and
organization of software.

This paper proposes a comment-based software
design support method by utilizing comments which
are usually inserted into a source code. Our hypoth-
esis is that a software designer leaves hints or clues
with respect to the reason or rationale for each module
or component as the comments on the source codes
when he/she designs and implements software [5, 8].
Comments are utilized for organizing the pieces of
source codes into a tree structure. Based on the con-
structed structure for the source code, case based sup-
port is then invoked for enabling the effective reuse
of past software (codes), especially at the upper pro-
cess in software design. A prototype system has been
implemented with the proposed support method and
experiments have been carried out to investigate the
effectiveness of our approach.

In our approach the reason or rationale for soft-
ware design is treated as a kind of context in software
design, comments are utilized to capture the rationale

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp919-924)

in source codes. Utilization of designer’s overall im-
age for the artifact in design is also proposed in [13]
for web page design support. Utilization of “com-
ments” is also utilized to facilitate cooperation among
computational agents in [12].

The proposed method aims at working as an inter-
active software design support during design process
and is expected to enable the effective reuse of source
codes by exploiting the partial modules for the current
design. Admittedly the proposed support framework
seems weak as the software design support when it is
compared with the framework of automated program-
ming from the viewpoint of utilizing the formal se-
mantics of software. However, since our approach can
be utilized for software design support even if a soft-
ware designer just leaves his/her vague and nebulous
idea at the upper stream in software design as com-
ments in his/her source codes, it is expected to work
as more flexible and robust software design support.

This paper is organized as follows. Section 2 de-
scribes our framework of software design support and
the system architecture of our system. Section 3 ex-
plains the details of the support method based on com-
ments in a source code. Section 4 describes the im-
plementation of the system and reports the result of
experiments for the system. Section 5 gives brief con-
cluding remarks and indicates future directions to ex-
tend our approach.

2 A Framework of Software Design
Support

2.1 Preliminaries

In general, software design includes conceptual de-
sign, algorithm or procedure/function design, and im-
plementation into a source code. We call a set (or,
sequence) of a set (or, sequence) of machine inter-
pretable sentences as a source code in this paper.
A source code can be simply referred as a code if it
is clear from the context. A pair of a source code and
the description of the rationale for the code is referred
as software in this paper. We assume that the ratio-
nale is represented as the comments in the code. Our
method aims at supporting software design which in-
cludes conceptual design as well as implementation
into the source code. Note that our method deals with
the support for middle or small scale software design,
and it is assumed that a software designer conducts
the above process. Support for large scale software is
beyond the scope of this paper.

Designer System
construct the
comment structure
from the designed code

case retrieval based on
the comment structure

provide the case (both
the retrieved code
and its comment structure)

design a software
into the source code

revise the design
based on the provided
code and its structure

register as a new case
(both code and structure)finished

Figure 1: Framework of Software Design Support.

2.2 Comments in Source Codes
This paper proposes to utilize the comments which are
often inserted into a source codes. The reasons for
utilizing the comments in a code for software design
support are:
◦ i). comments are inserted by the software designer,

who implemented the source code and thus should
understand the software and the source codes.

◦ ii). comments are often inserted for explaining a
specific module or function in the source code.

From i), it is likely that the reason or rationale be-
hind the software is left as a kind of hints in the com-
ments. From ii), it would be possible to effectively
reuse past codes based on the comments by partition-
ing them into several modules with specific functions.

2.3 Overview of Software Design Support
In this paper, we propose a software design support
system which utilizes comments in a source code.
Overview of support process in the proposed system
is shown in Figure 1. First, a software designer imple-
ments the tentatively designed software into a source
code and triggers the process (upper left in Figure 1).
In our approach, it is assumed that the software de-
signer is cooperative and inserts comments onto the
source code. For the code, the system constructs what
we call a comment structure based on the inserted
comments. A comment structure is defined as a tree
structure which organizes the comments. The details
of construction is explained in Section 3. After that,
the system retrieves a similar case (source code) with
respect to the comment structures, and provide them
to the designer. Here, a case is defined as a pair of
a source code and the corresponding comment struc-
ture.

If the retrieved code is similar to the currently de-
signed one, then the user (in this paper, a user plays

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp919-924)

User Interface

Interpretation
Module

Domain
Ontology

case retrieval

similarity
calculation

distance
calculation

Case Base

Workspace Display Module

structuring codes
based on
comments

diff. detection
in comment
structure

Inference
Module

Memory
Module

user

Figure 2: System Architecture.

the role of software designer) carries on the current
software design by referring to it. If not, the user con-
jectures the difference between the retrieved software
and the currently designed one in terms of the com-
ment structure, and modifies the code as well as the
comments. The above processes are repeated interac-
tively between the designer and the system in order to
gradually brush up the designed software.

Our system aims at supporting a software de-
signer in the following situations:
• the designer has his/her clear image for software de-

sign, but he/she wants to consult other concrete ex-
amples (codes) in order to realize it.

• the designer is familiar with the details of imple-
mentation, but he/she wants to consult how various
modules are organized in other source code consis-
tently.

For the former situation, the designer can utilize or
refer to the concrete code in the retrieved case. For
the latter situation, the designer can refer to the over-
all structure, not the actual implementation, in the re-
trieved case.

2.4 System Architecture
Figure 2 shows the architecture of our system. Basi-
cally, it consists of three modules:
∗ An interpretation module: this module analyzes the

current source code and organizes it into a tree struc-
ture based on the comments in it.

∗ A memory module: this module contains 1) a case
base, which stores the past designed software in con-
junction with the structure based on the comment on
the software and 2) a domain ontology with respect
to the words which are usually used as the comment

in the domain at hand.

∗ An inference module: this module contains 1) the
distance calculation module for the comment words,
2) the similarity calculation module for the com-
ment structures based on the distance, and 3) case
retrieval module from the case base.

In addition, a user interface module is provided, which
contains 1) a workspace for editing the source code
and the comment structure, and 2) a display module
to show the retrieved case.

3 A Comment based Support
Method

For organizing a source code into the corresponding
comment structure described in Section 2.3, two ap-
proaches, a syntax based approach and a semantic
based one, are utilized.

3.1 Syntax based Structuring
A software designer often inserts or arranges indents
in a source code to separate it into the functionally
meaningful chunks of sentences. Thus, the syntax
based approach exploits the indentation of sentences
in a source code. Note that indents can be inserted
into a code with respect to 1) sentence and 2) com-
ment. Although the indent of a comment can depends
on the “style” or “preference” of designers and thus
can vary depending on designers, that of a sentence
can be conceived as reflecting the role of the sentence
in the software. Thus, the indent of sentence is uti-
lized in syntax based approach. This approach deals
with:
• indent position: the position of the sentence (or, the

set of sentences) on which the comment is put.

• recursive comment: the comment which is inserted
inside the sentence with other comment.

Based on our preliminary analysis, the correspon-
dence between a comment and the set of sentences to
which the comment refer is treated as
◦ a comment beside a sentence: it refers to the set of

sentences bellow the comment.

◦ a comment on the top of a sentence: it refers to the
set of sentences until the comment with the same
indent position appears.

The comment structure is constructed by the fol-
lowing procedure:
� 1) a node is created for each comment, and a key-

word in the comment is treated as the node label.

� 2) as for a recursive comment, a tree structure is con-
structed for each nested comment, the constructed

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp919-924)

tree structures are treated as the subtrees of the node
for the outmost comment.

Figure 3 illustrates an example of tree structure for the
comments in a code.

// connect with database
Connection[] sqlInit() throws SQLException,ClassNotFoundException {

//DriverManager.setLogStream(System.out);
//JDBC driver
Connection cons[]={null,null};
Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");
// connect with Oracledatabase
cons[0]=DriverManager.getConnection (
"jdbc:odbc:oracletest", "SYSTEM", "MANAGER");
// connect with Accessdatabase
cons[1]=DriverManager.getConnection (

"jdbc:odbc:dream_acs", "Admin", "");
return cons;

w2}
//initialize
public void init(){

setLayout(null);

connect with database

JDBC driver

connect with Oracledatabase

connect with Accessdatabase

Figure 3: An example of tree structure with respect to
the comments in the source code.

3.2 Semantics based Structuring

When the literal words in a comment are utilized as
the node label in a comment structure, since the ex-
actly same words are rarely utilized, it gets very hard
to take matching or correspondence between com-
ment structures. One of the reasons why software
designers can understand codes despite the words in
comments vary among them is that they can utilize
domain-specific knowledge to understand the content
implied by the comments. Thus, it is necessary to in-
corporate domain-specific knowledge for the designed
software at hand into the system.

Ontologies are introduced as explicit specifica-
tion of a conceptualization [3, 4]. Semantic based ap-
proach is conducted by utilizing a domain ontology
which describes the typical vocabularies in the appli-
cation domain. Keywords are extracted from com-
ments based on the domain ontology and they are
utilized as the node labels in the comment structure.
Thus, it plays the role of normalizing the node labels
in a comment structure so that its generalization ca-
pability can be increased to enable the matching with
other structures. Figure 4 shows an example of do-
main ontology. Currently it is assumed that the vo-
cabularies are structured into a tree structure to make
the extraction of keywords from a comment simple.

transform

spectrum

mean

noise distribution

error estimate

AR model

convert

compute

calculate

execute

Figure 4: Example of Domain Ontology.

3.3 Case based Support
Case based support [6, 11] is utilized in our approach
to retrieve the past similar codes. As described in Sec-
tion 2.3, a case is defined as a pair of a source code
and the corresponding comment structure. A software
designer can refer to the past similar codes with re-
spect to the organization of the codes in terms of the
inserted comments. Case retrieval is conducted by
defining the distance between the comment structures.
Figure 5 illustrates the calculation of distance between
comment structures. The distance between comment
structures is defined as follows:
• the distance between words in the nodes is defined

as the path length between the words in the domain
ontology.

• the distance between the nodes in the comment
structure is defined as the sum of 1) the number of
lower nodes and 2) the distance between the words.

• the correspondence of nodes between comment
structures is taken as the one with the shortest dis-
tance.

• a penalty is given to the upper node in a comment
structure when it is impossible to take the corre-
sponding node in the other comment structure.

The comment structure acts as a kind of media to rep-
resent design rationale of a code, and the distance cal-
culation enables the case based support in terms of
design rationale.

4 Evaluation

4.1 Implementation
The system with the method described in Section 3
has been implemented on a personal computer with
Java language. Figure 6 shows a snapshot of Graphi-
cal User Interface (GUI) in the system1. Each window
in the figure plays the following role:

1Snapshots of the GUI includes Japanese characters since the
system was evaluated by Japanese students in our laboratory.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp919-924)

V2

V0

V1

d2 d1

D
３

D1 = d1 + d2

D2

T1

T3T2

TreeT

S1

S3S2

TreeS

Distance(TreeT , TreeS)
= D3 + D2 + D1

V: vocabulary

D: distance
between nodes

D: distance

between vocabularies

Figure 5: Distance between Comment Structures.

A B

C D

Figure 6: User Interface.

◦ Program Edit Window (A): The user conducts the
coding of software in this window. By selecting
“add case” from the menu, he/she can register the
comment structure of the currently edited code in
conjunction with the code as a new case into the case
base.

◦ Comment Edit Window (B): The user can edit the
comment structure for the software in (A). In addi-
tion, he/she can retrieve similar past cases from the
case base by specifying the partial structure in this
window.

◦ Program Display Window (C): This window shows
the retrieved code from the case base.

◦ Comment Structure Display Window (D): This win-
dow shows the comment structure of the retrieved
code shown in (C).

Figure 7: A snapshot of system usage (at the initial
phase).

4.2 Experiments
Experiments were conducted to evaluate the imple-
mented system. Five Japanese students in our lab-
oratory participated in the experiment. All of them
had the knowledge and experience of programming
in C language. They were required to design a FFT
(Fast Fourier Transfer) program based on DFT (Digi-
tal Fourier Transfer) programs in the frequency anal-
ysis. Among them, two subjects had detailed knowl-
edge for the frequency analysis; the rest did not.

Figure 7 shows a snapshot of of case based sup-
port with respect to the data acquisition module based
on the comment structure at the initial phase in soft-
ware design. A Similar case was retrieved from the
case base in terms of the organization of a source code
based on the comment structures.

After completing the implementation of the as-
signed task, the subjects were asked to specify the
subjective evaluation in 5 grades (5:excellent, 1:poor)
with respect to:
◦ retrieval: the precision for the retrieval of prefer-

able cases

◦ effect: the effectiveness of the system at the initial,
middle, and final phase in software design.

◦ comprehension: to what extent the comment struc-
ture is effective to facilitate intuitive understanding
of the code.

◦ structure: to what extent the comment structure re-
flects the organization of the code.

In addition,
◦ how the system was utilized

◦ how the retrieved cases (programs) were utilized to
carry out the current software design

were also asked with a questionnaire.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp919-924)

Table 1: Result of experiment (frequency analysis do-
main, subject A,B: expert, C,D,E: novice).

A B C D E Ave.
retrieval 4 2 3 4 3 3.2
effect (initial) 3 4 4 4 4 3.8
effect (middle) 4 3 2 3 2 3.0
effect (final) 4 2 2 3 2 2.6
comprehension 4 2 3 4 4 3.4
structure 4 3 4 3 3 3.4

4.3 Results
Table 1 summarizes the results of the experiment. Ta-
ble 1 indicates that the proposed system can be uti-
lized as the software design support tool at the initial
and middle phase. However, it might be not so ef-
fective in the final phase. Our current conjecture for
these results is that, referring to other similar codes is
helpful to form the overall software design at the ini-
tial or middle phase in software design. On the other
hand, since the final phase is mainly devoted to bug
fix, utilization of the system did not work well.

From the above results, it can be said that the in-
teraction with the proposed system can be helpful to
come up with the idea for the overall organization of
the designed code at the upper process in software
design The comment structure, which is constructed
based on the comments inserted into the source code,
seems to be effective to organize and represent the rea-
son or rationale behind the codes.

5 Concluding Remarks
This paper has proposed a comment-based software
design support method by utilizing comments which
are often inserted into source codes. Comments in a
source code are utilized for organizing the code into
a tree structure so that the overall structure of the
code can be explicitly represented. Case based sup-
port is utilized based on the constructed structure for
enabling the effective reuse of past codes, especially
at the upper process in software design. A prototype
system which incorporates the described method has
been implemented. The results of the experiments
are encouraging and suggest its effectiveness. As
an immediate future plan, protocol analysis and eth-
nomethodology analysis are planed to conduct more
intensive analysis of the obtained results.

Acknowledgements: The author is grateful to Dr.
Takayuki Yamaoka for the fruitful discussion about

the distance calculation and to Mr. Koichi Hashimoto
for the implementation of the system.

References:

[1] H. Abelson, G. J. Sussman, and J. Sussman.
Structure and Interpretation of Computer Pro-
grams. MIT Press, 1996.

[2] M. M. Burnett. Visual Programming. In J. G.
Webster, editor, Encyclopedia of Electrical and
Electronics Engineering. Wiley-Interscience,
2001.

[3] N. Guarino. Concepts, attributes, and arbitrary
relations – some linguistic and ontological cri-
teria for structuring knowledge bases. Data and
Knowledge Engineering, 8, 1992, pp.2 49–261.

[4] A. Hameed, D. Sleeman, and A. Preece. De-
tecting mismatches among experts’ ontolo-
gies acquired through knowledge elicitation.
Knowledge-Based Systems, 15, 2002, pp. 265–
273.

[5] W.L. Johnson. Understanding and Debugging
Novice Programs. Artificial Intelligence, 42(1),
1990, pp. 51–97.

[6] J.L. Kolodner. Improving human decision mak-
ing through case-based decision aiding. AI
Magazine, SUMMER 1991.

[7] S.M. Lewandowski. Frameworks for
component-based client/server computing.
ACM Computing Surveys (CSUR), 30(1),
1998, pp. 3–27.

[8] S. B. Shum. Design Argumentation as Design
Rationale. In A. Kent and J.G. Williams, ed-
itors, The Encyclopedia of Computer Science
and Technology. Marcel Dekker, Inc., 1996.

[9] L. Sterling and E. Shapiro. The Art of Pro-
log: Advanced Programming Techniques. MIT
Press, 1994.

[10] C. Szyperski, D. Gruntz, and S. Murer. Compo-
nent Software - Beyond Object-Oriented Pro-
gramming. Addision-Wesley, 2002.

[11] Linda M. Wills and Janet L. Kolodner. Towards
More Creative Case-Based Design Systems. In
David B. Leake, editor, Case-Based Reasoning
– Experiences, Lessons, and Future Directions,
chapter 4, The MIT press, 1996, pp. 81–91.

[12] T. Yoshida, K. Hori, and S. Nakasuka. A Coop-
eration Method via Metaphor of Explanation.
IEICE Trans. Fundamentals., 81EA(4), 1998,
pp. 576–585.

[13] T. Yoshida, M. Watanabe, and S. Nishida.
An Image based Design Support System for
Web Page Design. International Journal of
Knowledge-Based and Intelligent Engineering
Systems, 2006. in press.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp919-924)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

