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Abstract: A new repair method based on QEA for 0/1 knapsack problems is proposed. In this approach, the 
qubit chromosome is used as heuristic knowledge to evaluate each element for the knapsack. The main idea is to 
delete the knapsack elements in the ascending order of qubit chromosome’s probability value whilst avoid 
violating the constraints on its capacity. To minimize the influence of initialization, three different methods are 
adopted for obtaining the initial probability. Experimental results showed that the proposed method is 
promising. 
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1. Introduction 
Quantum-inspired evolutionary algorithm (QEA) is 
recently proposed by Han, which is a probabilistic 
model evolutionary algorithm based on the concept 
and principles of quantum computing[1-3].It can 
treat the balance between exploration and 
exploitation more easily compared to conventional 
GAs. When QEAs are applied to knapsack problems, 
unfeasible solutions are often generated by 
observation operator. That is, generated solution 
does not always satisfy constraint conditions (a 
solution that exceeds the capacity of the knapsack). 
The random repair procedure is used in [1-3] for 
deriving feasible solutions from unfeasible ones. In 
this algorithm, elements are selected in random order 
and no heuristic knowledge is used, therefore the 
algorithm cannot effective exploit the search space.  

QEA uses a novel representation that is based 
on the concept of qubits. The qubit chromosome 
represents the probability of obtaining different state. 
In this paper, we propose a new repair procedure 
based on the qubit chromosome. In this approach, we 
use qubit chromosome as heuristic knowledge to 
evaluate each element for the knapsack. So we select 
elements for deletion in the knapsack in the 
increasing probability value order.  

The rest of this paper is structured in the 
following way. Section 2 shows conventional 
constraint handling techniques for 0/1 knapsack 
problems. In section 3 we describe the proposed 

repair procedure. The next section presents 
experimental evaluation. Finally, section 5 concludes 
this paper.  

 
 

2. Conventional Constraint Handling 
Techniques 
There are constraint handling techniques used in 
evolutionary computation as follows: various penalty 
function, repair algorithms, specialized 
representation and hybrid algorithms, etc[4]. Of the 
known techniques, penalty function and repair 
methods are popularly used for 0/1 knapsack 
problems. 
 
 
2.1 Penalty Methods 
In most applications to constrained optimization 
problems, the penalty function method has been used, 
because each one of them can be easily applied to 
any problem without much change in the 
algorithm[5]. The main idea of penalty functions is 
to penalize the evaluation of infeasible solutions so 
that it is not competitive with the evaluations of 
feasible solutions.  

This evolution is done in the following manner: 
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where 1( ... )mx x x= , ix is 0 or 1, ip is the profit of 
item i , iw is the weight of item i , and C is the 
capacity of the knapsack. 

There are many possible strategies for assigning 
the penalty function. Here, only two cases were 
considered, i.e. the growth of the penalty function is 
linear penalty and quadratic penalty with respect to 
the degree of violation, respectively: 
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2.2 Repair Methods 
Repairing methods are popular in the evolutionary 
computing community for many combinatorial 
optimization problems (e.g. the traveling salesman 
problem, the knapsack problem, and the set covering 
problem). The process of repairing infeasible 
individuals is related to learning, which is local 
search in general or local search for the closest 
feasible solution in particular[5].  

In repair methods, the profit ( )f x of each 
string is determined as: 

'

1
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n

i i
i

f x p x
=

= ∑                   (4) 

where 'x is a repaired individual which is selected 
from the original vector x. 

There are two repair methods which follow the 
outline of this repair procedure. They may differ in 
selection procedure, which chooses an element for 
removal from the knapsack. 

[1]rA (random repair): selects a random element 
from the knapsack, which is used in[2]. 

[2]rA (first fit algorithm): selects the first 
available element from the left (right) of the list, 
which is used in [6]for initialize the population of a 
GA. 

In the random repair and first fit algorithm, no 
effective heuristic knowledge is used in the local 
search. 

 
 

3. The Proposed Repair Method 
In QEA, the population of individuals is represented 

by the qubit chromosome, a vector of probabilities: 
1( ) ( ( ),..., ( ),..., ( ))l l l i l nP x p x p x p x=      (5) 

where ( )l ip x refers to the probability of obtaining a 
value of 1 in the i th component of lD , the 
population of individuals in the l th generation. 

( )lP x is update by quantum gate operation in each 
generation. 

The ( )l ip x  may be used as heuristic knowledge 
to evaluate the importance of each element for the 
knapsack. The elements are selected in an ascending 
order by the chromosome’s probability value in 
order to avoid violating the constraints on 
knapsack’s capacity. The proposed repair algorithm 
is shown in Figure 1. 
Procedure repair (x)  
Begin  

knapsack-overfilled = false  
'x x=  

If 
n

i=1
i iw x > c∑  

then knapsack-overfilled := true  
while (knapsack-overfilled) do  
begin  
i := select an element in the increasing order of 

the probability value to remove 
i.e., x'[i] := 0  

if 
n

i=1
i iw x c≤∑  

then knapsack-overfilled := false  
end  

end  
Fig.1 First probability value algorithm ( [3]rA ) 
 
 
4. Experiments 
 
4.1 Test Problems 
In this section we carry out some experiments with 
different number of objects (n=100, 200 and 500). 
For each experiment we use strongly correlated sets 
of data as follow: 

uniformly random[1,10),iw =         (6) 
5,i ip w= +                         (7)  

1
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where iw is the weight of item i , ip  is the profit of 
item i , andC is the capacity of the knapsack. 
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4.2 Initialization 
In order to minimize the influence of initialization, 
three different methods are used to obtain the initial 
probability. 
 
4.2.1 Uniform 
Each item is selected with equal probability, 
independent of the remaining elements. In order to 
obtain an expected number of selected elements of 
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4.2.2 Proportional 
Each element is selected with a probability 
proportional to its ration between profit and weight, 
which can be expressed as following: 

0 1 0 1 1( ( ),..., ( )) ( ,..., ).n n np x p x p w p w∝   (10) 
 
4.2.3 Probabilistic Seed 
In this method, starting form a feasible solution, an 
initial probability value is obtained: 

0 1 0 0( ( ),..., ( ),..., ( ))i np x p x p x  
Where for all i=1,…,n: 

{ i
0

i

if item x  is selected( ) 1  if item x  is not selectedip x α
α

 = −  (11) 

In this paper, we fix the α value to 0.95. 
 
4.3 QEA for 0/1 Knapsack Problems 
Fig.2 shows the procedure of QEA. The procedure of 
QEA is explained as follows: 

i) )(0 ixp  is initialized as described in section 
3.2.  
ii) This step generates binary solution tX  by 
observing the states of 0 ( )p x . One binary 
solution is formed by selecting each bit using the 
probability of qubit. 
iii) Binary solution 0X is evaluated and repaired. 
The initial best solution is into B, where 

0B = { })(,),(),( 02010 nxbxbxb Λ , and )(0 ixb is 

the same as )(0 ix at the initial generation. 
iv) Terminal condition is defined as following: 

2
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λ
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where λ  value is fixed to 0.96 in this paper. 
v, vi) In the while loop, binary solution in tX is 

formed by observing the states of 1tP−  as in step 
ii), and each binary solution is evaluated and 
repaired for the fitness value. 
 

Procedure of QEA 
begin 

t=0 
Initialize pt 

  Make x(t) by observing the states of pt 
Evaluate and repair xt , save the best solutions 
among xt into Bt 

    while (not terminal condition) do 
begin 
t = t + 1 
Make xt by observing the states of pt-1 
Repair and evaluate xt 
Update pt using H ε

-gates 

Store the best solutions among Bt-1 and xt into 
Bt  

end 
end 

Fig.2 The procedure of QEA 
 
vii) In this step, Q-bit individuals in tP  are 
updated by applying Hε -gates as used in [3]. The 
following rotation gate is used as a Hε -gate in 
QEA: 

( ) ( ) ( )
( ) ( ) ⎥⎦

⎤
⎢⎣
⎡

∆∆
∆−∆=∆

ii

ii
iU θθ

θθθ cossin
sincos     (13) 

where iθ∆ , i=1,2,…,m, is a rotation angle of each 
Q-bit. The rotation angle iθ∆  is showed in Table 1.  

 
Table 1 Lookup table of iθ∆ , where f(·) is the 
fitness function; ix and ib  are the i-th bits of the 
binary solution x and the best solution b 

 ( )x i  ( )b i  iθ∆  
0 1 -0.01π  ( ) ( )f x f bp  
1 0 0.01π  

other 0 
 
viii) The best solutions among tB and 1tP− are 
selected and stored into tB , and if the best solution 
stored in tB  is a better solution fitting than the 
stored best solution b, the stored solution b is 
replaced by the new one. Until the termination 
condition is satisfied, QEA is running in the while 
loop. 

 
 

4.4 Experimental Results and Discussions 
Table 2 to 4 show the average profits and iterations 
from 20 independent experiments for the 100, 200 
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and 500 objects problems, respectively. As shown in 
the tables, five ways are considered for the 
evaluations of the individuals in combination with 
three initializations. 
 
Table 2 Experimental results of the knapsack problem 
of n=100, t represents iterations 

 uniform proportional probabilistic seed 
 profit t profit t profit t 
[1]pA  569.1 334 552.8 378 557.7 298 

[2]pA  563.2 301 539.0 324 556.5 303 

[1]rA  581.2 323 572.6 397 574.3 346 

[2]rA  580.9 349 574.1 468 573.7 382 

[3]rA  586.1 1431 591.3 2716 580.5 1493 

 
 

Table 3 Experimental results of the knapsack problem 
of n=200, t represents iterations 

 uniform proportional probabilistic seed 
 profit t profit t profit t 
[1]pA  1109.5 382 1050.4 370 1095.0 338 

[2]pA  1100.1 350 1040.6 426 1093.2 351 

[1]rA  1143.4 404 1111.0 486 1131.9 420 

[2]rA  1138.9 427 1135.3 680 1129.5 468 

[3]rA  1148.3 691 1170.0 683 1132.0 651 

 
 

Table 4 Experimental results of the knapsack problem 
of n=500, t represents iterations 

 uniform proportional probabilistic seed 
 profit t profit t profit t 
[1]pA  2725.0 383 2608.2 452 2694.1 333 

[2]pA  2711.9 345 2583.5 308 2687.7 346 

[1]rA  2787.3 466 2739.4 692 2767.6 474 

[2]rA  2783.4 456 2785.4 907 2772.3 502 

[3]rA  2800.8 569 2828.8 1153 2771.0 538 

 
Comparing different initialization, QEAs 

designed by proportional initialization yielded 
superior results as compared to all others. QEAs with 
uniform initialization outperformed the probabilistic 
seed initialization. This shows the performance of 
QEA for 0/1 knapsack problem strongly depends on 
the choice of an initialization method. 

Comparing different repair procedure, roughly 
speaking QEAs using first probability value repair 

algorithms have the best profit and the most iteration. 
The only exception is under the conditional of 
probabilistic seed initialization for 500 objects, 
because the chromosome’s probability value is set by 
a feasible solution and the probability value can’t 
completely reflect the importation of every 
chromosome. QEAs using penalty function are worst 
due to their weak ability to exploit the mathematical 
structure of the constraint. 

 
 

5. Conclusions 
In this paper, we propose a new repair procedure for 
QEA to solve the 0/1 knapsack problems. 
Experimental results demonstrate this proposed 
repair algorithm can effective exploit the search 
space and improve the performance of QEA for 0/1 
knapsack problems.  
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