
An Approach to Manage and Search for Software Components*

Hao Chen1, Zhong Ming1, Shi Ying2

* This research was supported by the the National Social Science Foundation of China under grant 05CTQ001;
Natural Science Foundation of Guangdong under grant 04011304; Shenzhen Science & Technique Plan under Grant
200422;

1College of Information Engineering,
Shenzhen University,
Shenzhen, 518060,

P.R.China

2State Key Lab. of Software Engineering,
Wuhan University,
Wuhan, 430072,

P.R.China

Abstract: - Currently component-based software engineering is increasingly being adopted for software
development. This approach relies on using reusable components as the building blocks for constructing
software systems. As the growth in the popularity of Internet, component providers should publish the software
components easily on the Internet, and component reusers can find the appropriate software components
conveniently with the aid of some tools. This makes it true for reusers to build software system integrated with
the components provided by others. Therefore, the major two problems are how to manage the COTS
components and how to find suitable components on the Internet. The solution to the first problem lies in
constructing a software component repository based on the component classification, which can realize the
sharing of software components resources. Applying search engine technology to search for matched
components is a good idea to solve the second problem. This paper proposes a new approach to manage and
search for software components, which support for component provider to publish the components and
component reusers to search for software components.

Key-Words: - Systematic classification, faceted classification, software component repository

1 Introduction
Since the idea of software reuse was proposed, the
technology and method of software reuse have been
researched in depth. Coming in with the introduction
of component-based reuse in later 90’s, this approach
has gained substantial interest not just in the research
community but in numerous industry sectors [1].
Now this approach has been applied in software
development broadly. Component-based reuse
focuses on that software development cycle should
be significantly shortened by reusing and assembly
the existing software components. However, two key
problems exist in this domain. One problem is how to
publish and manage the existing software component
resources. The solution to this problem lies in
classifying the component and constructing the
software component repository. The problem facing
the component reusers is how to find suitable
software component resources on the Internet. Our
solution to this problem is to apply the technology of
search engine to search for component resources.
Additionally, the search engine for searching
component resources should collaborate with the
retrieval engine built-in the software component
repository. The search engine provides one rough
search manner, while the retrieval engine can be

applied to find the components accurately. These two
kinds of engines establish a two-level query
mechanism together.

After comparing the related classification of
software components, this paper proposes the hybrid
approach to classifying the software components.
This approach blends the systematic classification
and faceted classification, which both come from
library and information retrieval. The aim to adopt
the systematic classification is to support the search
engine to classifying the components. The motivation
of applying the faceted classification lies in
supporting the retrieval engine. We have developed
the prototype system of software component
repository management platform, which can be used
for building and managing the component repository.

Search engine can facilitate component reuser to
find the software component matching their
requirements. However, general-purpose search
engines are inappropriate to search software
components. Some people developed the specific
search engines for software components. But those
engines have some limitations. This paper proposes a
new specific search engine for software
components(SE4SC), which provides convenient

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp358-363)

support for component reusers to search software
components on the Internet.

The rest of this paper is organized as follows:
Section 2 reviews related works. Section 3 presents
the approach to classify and managing the software
components and shows the prototype implementation
of the software component repository management
platform. In Section 4, we introduces the SE4SC and
illustrate the prototype system of SE4SC.
Contributions of this work and areas for future work
are finally presented in Section 5.

2 Related Work

2.1 Systematic Classification
Systematic classification is a kind of well-defined
document classification, which is based on science
knowledge and the division of concepts. This method
is enough to provide a rough classification though its
disadvantage for dynamic update. The main schedule
of systematic classification is a schema of classes
which consist of basic classes, basic large classes,
summary tables and detail tables. Subdivisional table,
which supply a schema of classes for subdividing the
category of main schedule, is extracted from a set of
subsections which classified by the same standard in
the main schedule and compiled independent of main
schedule.

Systematic classification has been adopted in the
information retrieval domain widely, for instance,
Yahoo! This method is also introduced to classify the
components, for example ComponentSource, which
is a professional website for components resources.
But some shortcomings exist in the classification
schema, such as only two level hiberarchy, short of
subdivisional table.

2.2 Faceted Classification
The faceted method, as used in library science, relies
on building up or synthesizing from the subject
statements of particular documents, which construct
a “Facet-Subfacet-classes” structure according to the
contents and subjects of document. This method
provides a expression for document’s subjects
through the combination of some facets. Facet is a
group of categories which are produced according to
some classification standards and sometimes
considered as perspective, viewpoint, or dimension
of a particular domain.

Faceted classification has been applied to
classification for software resources in early 1980. Dr.

Rubén Prieto-Díaz proposed the software component
classification, which is based on faceted
classification in 1987 [2]. That faceted classification
schema included the following six facets: Function
facet, Objects facet, Medium facet, System type facet,
Functional area facet, Setting facet. However, the
original component classification schema has evident
limitations, such as lack of reuse-oriented facets,
short of available information supporting reuser to
find and reuse components, and too simple to satisfy
the needs of reusers.

2.3 General-purpose Search engines
A general-purpose search engine always consists of
crawlers, indexer, indexes storage and query module.
The crawlers visit the pages and documents on the
Web and store them. The indexer extracts all the
keywords from each page or document and builds the
index for every keyword. The query module
therefore is responsible for receiving search requests
from users. This module relies heavily on the indexes
[3]. Currently general-purpose search engines, such
as Google, AltaVista, InfoSeek, WebCrawler, Nutch,
enable users to search for web resources published on
the Internet effectively, such as HTML web pages,
documents with PDF, PostScript, or MS Word format
[4]. However they are not proper for searching for
component resources on the Internet.

General-purpose search engines are just used for
locate the web pages and documents that have a
particular extension name. For the purpose of
providing search support for the users, search engines
build indexes by analyzing the content of these web
pages and documents. Software components are not
similar to those general documents, which usually are
binary code or byte code. They have no particular
extension name for identifying and always adhere to
some standard component model specifications, such
as JavaBean, EJB (Enterprise JavaBean), COM,
ActiveX, CCM (CORBA Component Model).
Therefore, the process of extracting the information
of interfaces from component entities must refer to
the component model these entities follow. So it is
unpractical for general-purpose search engines to
locate component resources on the Internet and
extract interface information from their entities.

2.4 Existing Specific Search engines
Software Engineering Institute(SEI) of CMU
developed the specific engine: Agora for searching
for software components. The object of Agora is to
create an automatically generated, indexed,
worldwide database of software products classified

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp358-363)

by component type, and provide the service of
searching for components for the reusers [5].

The workflow of Agora engine is similar to that of
general-purpose search engines and contains two
basic phases: the location and indexing of
components and the search and retrieval of
components.

Although Agora is the specific software search
engine, it has two disadvantages:

(1) It still uses the AltaVista Web search engine
to support the search for HTML documents.

Some deficiencies of this integration mechanism
are as follows: First, in order to be located by the
JavaBean Agent of Agora, the JavaBean components
must be embedded into the web pages as applet.
Second, not all the applet classes searched by the
JavaBean Agent are JavaBean components in that the
applet classes aren’t need to follow the JavaBean
component model. Finally, a lot of web pages that
contain “applet” tag not really contain the applet code.
So the results returned by the AltaVista Internet
service may contain lots of useless information.
Filtering this information will reduce the efficiency
of Agora.

(2) It only lays emphasis on the characteristics
of the component interfaces, but ignore the other
characteristics that reflect the reusers’ requirements.

In the Agora engine, the agent uses the particular
introspection process depending upon the specific
component model to extract the characteristics of
interfaces and index these characteristics. To a
certain extent, it solves the problem that the
general-purpose search engine can’t precisely match
the component attributes, but it only emphasizes the
interface characteristics. However, these
characteristics extracted by the agent don’t contain
the information that the reusers concern more, such
as, application domain, deploy environment, and
performance. Agent should extract some high-level
characteristics of components, rather than only
low-level characteristics of components such as
operation, attribute-level names, and so on.

In addition to Agora, the alphaBeans developed by
IBM is another search engine used for searching for
components. The description of the components
searched by alphaBeans includes more information,
such as simple introduction, installing information,
requirement information, evaluation information,
FAQ [6]. But it has evident limitations for using
alphaBeans to search for software components.
AlphaBeans search for JavaBean components
exclusively, and can only locate the components
resources on a small scale.

3 Component Management
Applying some method to classifying the software
components and constructing a software component
repository can manage the software components
effectively.

3.1 Hybrid Component Classification
In order to make search engine and retrieval engine
work effectively, we propose the hybrid approach to
classifying the software components, which adopts
two kinds of classification schema. One classification
schema is based on the systematic classification. The
other classification schema is based on the faceted
classification. Both schemas are defined using the
XML Schema. Systematic classification schema is
search engine oriented. According this schema,
component descriptor offered by the component
provider supports for reusers to search for component
roughly by using the search engine. Faceted
classification schema is retrieval engine oriented.
Component provider describes the software
components based on this schema and offers the
component descriptors that facilitate component
reuser to retrieve components accurately with the aid
of the retrieval engine [7]. All descriptors are
described by XML, so the descriptors can be
validated by the classification schema that is
described by XML Schema. The process of acquiring
the suitable components contains two phases: search
and retrieval phases. Firstly, component reusers find
the candidate components roughly with the aid of
search engine. And then they retrieve components
accurately among the candidates by using the
retrieval engine. That is to say, these two kinds of
engines establish a two-level query mechanism
together.

When describing the component referring to
hybrid classification, the component provider must
generate the descriptors based on two classification
schema respectively. As a result, there exist two
descriptors based on different schema for each
component. One descriptor based on the systematic
classification contains the basic information used for
rough search. Search engine need to generate the
indexes of the classification information. To keep the
indexes stable, systematic classification schema had
better to be stable. Therefore, a loose systematic
classification schema is adopted in terms of search
requirement for software components. This
systematic classification schema consists of main
schedule and subdivisional tables. Main schedule
includes basic large classes and basic schema of
classes. Basic large classes include three classes:
System Software, Supporting software for

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp358-363)

development, and Application software. Laying out
each large class, then a basic schema of classes is
formed. For example, in regard to Application
Software large class, the basic schema includes
finance, telecom, business, taxation, government,
health, and education class. There are three
subdivisional tables with hierarchical structure:
component specification table, development platform
table and runtime platform table. For instance, the
component specification table includes seven classes
that are JavaBean, EJB, ActiveX, COM, COM+,
DCOM, CCM class.

The other descriptor based on the faceted
classification contains the information about basic
information and domain information, which is
helpful for accurate retrieval. Figure 1 shows the
structure of faceted classification schema.

Fig.1 The structure of faceted classification schema

3.2 Software Component Repository
Building a large-scale software component
repository based on some classification is an
effective approach to manage the software
components. A prototype system of the software
component repository management platform has
been developed [8]. This platform can give help to
administrators for constructing and maintaining the
component repository.

Fig.2 software component repository management
platform interface

As the figure 2 shows, with the supports provided
by the platform, the administrators can maintain the
classification schemas, component providers can
register the components into the repository, and
component reusers can retrieve the components
matching their requirement in the help of the retrieval
engine.

4 SE4SC
Considering the deficiencies when existing search
engine is adopted to search for components, we
propose the SE4SC that is a new specific search
engine for software components. The motivations of
SE4SC are presented as follows:

(1) SE4SC mainly acquires the components from
the software component repository.

(2) SE4SC can provide two means for reusers to
search for components. One is the keyword-based
search, and the other is the topic directory based on
systematic classification schema.

(3) SE4SC should support the rough search for
components, but also can forward the reusers’ search
requests to retrieval engine built in the software
component repository for retrieving the components
accurately.

4.1 Architecture of SE4SC
SE4SC consists of Repository Registry Center,
crawlers, systematic classifier, search service
interface, search service control, index database,
Component Descriptor Repository and so on, as
shown in figure 3. The details of each part will be
presented as follows:

Fig.3 Architecture of SE4SC

(1) Repository Registry Center
Repository Registry Center provides registry

service for component repositories and stores
systematic classification schema.

(2) Crawlers
Crawlers locate the components and extract

descriptors from component resources. At first,

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp358-363)

crawlers obtain the URLs of the component
repositories registered in Repository Registry Center,
or find particular marked component repositories on
the Internet. Then, crawlers call the retrieval
component service provided by each software
component repository and obtain all the component
descriptors. Crawlers adopt the technology of
multi-threads and cache to improve efficiency.
Considering the problem of network load, crawlers
extract component descriptors from repository in
batches.

(3) Systematic Classifier
Systematic classifier indexes component

descriptors based on the systematic classification
schema and store the descriptors in the Component
Descriptor Repository.

(4) Search Service Control
Search service control matches the candidate

components and returns them to search service
interface depending on the search means, search
criterion and systematic classification schema.
Search service control also takes on responsibility for
forwarding the reusers’ search requests to retrieval
engine provided by the software component
repository for further retrieval.

(5) Search Service Interface
Search service interface provides reusers two

means of searching for components by calling search
service control.

(6) Index Database
Index database is used for storing indexes that are

generated by systematic classifier. The establishment
of index database can improve the performance of
SE4SC.

(7) Component Descriptor Repository
Component Descriptor Repository is used for

storing component descriptors extracted by crawlers.
The workflow of SE4SC is similar to that of Agora

and includes two phases:
(1) Locate the component resources, obtain the

component descriptors and indexes the information
in the component descriptors

The crawlers get the URLs of the software
component repository, and start multiple threads to
call the services supported by the repository, and then
extract component descriptors in batches. Systematic
classifier indexes the classification information in the
component descriptors, classify and store the
component descriptors.

The crawlers can also locate component resources
adhering to SCDM in the distributed environment.
Similarly, the systematic classifier indexes and stores
the descriptors.

(2) Provide search service for the reusers

SE4SC provides two means of searching for
components for the reusers. The advantage of
keyword-based search is easy to use. However, the
semantics of a keyword varies with different domains.
So its imprecise maybe results in too many recalls.
While topic directories based on systematic
classification schema can assign the components to
the right topic by using the important classification
information that the component descriptors contain.
So topic directories have higher precise than
keyword-based search. Also, topic directories means
facilitate the component reuser to narrow the search
space, which is preparatory to accurately retrieve
components by using the retrieval engine built in the
software component repository.

The component reusers can select the
keyword-based search, and enter any keywords as the
query string, and then get the candidate components.
Further, they can check the details of the component
by clicking the link of the components. Alternatively,
the reusers can use the search means based on
systematic classification schema to search for
components, and examine the details of the
component description. Furthermore, the reusers’
search request can be forwarded to the retrieval
engine of software component repository for
searching for components accurately among the
candidates.

4.2 Prototype System Of SE4SC
The prototype system of SE4SC acquires component
resources, and provides the convenient support for
reusers to search for components. As follows, we
illustrate that reusers search for components by using
two means provided by SE4SC.

(1) Keyword-based search
Component reusers submit the search request by

entering the keyword. As shown in the Figure 4,
reusers enter the “EJB” as the search keyword in the
input box, and then SE4SC returns the search results
on the right web page.

Fig.4 Component reusers search for components by
using the keyword-based search.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp358-363)

(2) Topic directory search based on the
systematic classification schema

Component reusers find components by using the
topic hierarchy in the lower left frame of the web
page. As shown in Figure 5, reusers specify the
search request as searching all EJB components
under the topic “Finance” which belongs to the topic
“Application Software”. Then SE4SC matches the
components and returns the search results on the right
web page. These results show that six candidate
components are matched successfully by SE4SC.
Component reusers can click the link of any
candidate, and then view the component in details.

Fig.5 Component reusers search for components by
using topic directories search.

After searching components by using the SE4SC,
the reusers can use the retrieval engine of software
component repository for accurate retrieval. The
reusers select the faceted classification schema,
specify the interesting facets, and assign the specific
term for these facets, and then submit these retrieval
requests for retrieving the components accurately
among the candidates.

5 Conclusion
This paper has presented an approach to manage and
search for software components. This method
adopted a hybrid component classification for
different purposes. The systematic classification can
supports the SE4SC. The faceted classification is
retrieval engine oriented, which focus on the reuse
requirement of the component reusers. Furthermore,
a software component repository management
platform is implemented as a prototype system. This
paper also proposes the architecture and prototype
implement of SE4SC. SE4SC can collaborate with
the retrieval engine built-in the software component
repository. This search engine provides one rough
search manner, while the retrieval engine can be
applied to find the components accurately, which
establish a two-level query mechanism.

In the future, the performance of SE4SC should be
enhanced, and the hybrid component classification
should be improved by defining a more stable
systematic classification schema and introducing a
specific application domain faceted classification
schema. Furthermore, the SE4SC should seamlessly
integrate with the retrieval engines and provide the
convenient support for the reusers to search for the
matched components by utilizing the two-level query
mechanism.

References:
[1] C. Szyperski, Component Software: Beyond

Object-Oriented Programming, Addison-Wesley,
New York, 1998.

[2] R. Prieto-Diaz and P. Freeman, Classifying
Software for Reusability, IEEE Software4 (1),
IEEE Computer. Society Press, Los Alamitos,
CA, January 1987,pp.6-16.

[3] Arvind Arasu, Junghoo Cho, Hector Garcia-
Molina, Andreas Paepcke, and Sriram Raghavan,
Searching the Web, ACM Transaction on Internet
Technology, Vol.1 No.1, August 2001.

[4] Shian-Hua Lin, Meng Chang Chen, Jan-Ming Ho,
and Yueh-Ming Huang, ACIRD: Intelligent
Internet Document Organization and Retrieval,
IEEE Transaction on Knowledge and Data
Engineering, Vol.14 No.3, pp.599-614, May/June
2002.

[5] R. C. Seacord, S. A. Hissam, and K. C. Wallnau,
Agora: A Search Engine for Software
Component, Technical Report,
CMU/SEI-98-011, 1998.

[6] AlphaBeans Homepage,
http://www.alphaworks.ibm.com/alphabeans.

[7] Padmal Vitharana, Fatemeh Mariam Zahedi, and
Hemant Jain, Knowledge-Based Repository
Scheme for Storing and Retrieving Business
Components: A Theoretical Design and an
Empirical Analysis, IEEE Transactions on
Software Engineering, Vol.29, No.7, pp.649-664,
July 2003.

[8] Zheng Ying, Chen Hao, Li Weizhai, Ying shi,
Construction and Implementation of Component
Repository Based on Web Services Technology,
Journal of Wuhan University of Technology,
Vol.26 No.2, pp.80-83, Feb.2004.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp358-363)

