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Abstract: The increasing use of advanced sensing technologies for strain measurements necessitates the 
development of strain-based identification methodologies. In this study, a three-step neural network strategy, 
called direct soft parametric identification (DSPI), is presented to identify the member stiffness and damping 
parameters of a truss structure directly from free vibration-induced strains. The rationality of the proposed 
methodology is explained and the theory basis for the construction of strain-based emulator neural 
network(SENN) and parametric evaluation neural network(PENN) are described according to the discrete time 
solution of the state space equation of structural free vibration. The performance of the proposed strategy is 
examined.  
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1 Introduction 
Many of civil infrastructures are now deteriorating 
due to aging, misuse, lacking proper maintenance, 
and, in some cases, overstressing as a result of 
increasing load demands and changing environments. 
It is critical to evaluate their current reliability, 
performance and condition for the prevention of 
potential catastrophic events. Due to its ability to 
continuingly report performance of a civil 
infrastructure, structural health monitoring is an 
emerging technology that could play an essential role 
in realizing a sustainable society. An integral 
component of such a system is the development of 
computationally-efficient system identification 
strategies. The identification of materials and 
structural properties can generally be categorized into 
two groups: local and global methodologies. The 
most widely used global identification methodology 
is based on vibration measurements [1-2].  

On one hand, advanced new sensors such as 
distributed optical fibers and piezoelectric sensors are 
being developed to continuously monitor the 
structural strain distribution in recent years [3]. The 
rapid development of these strain sensing techniques 
necessitates the development of a new structural 
identification methodology based on strain 
measurements. 

On the other hand, neural networks have recently 
drawn considerable attention in civil engineering 
community due mainly to their ability to approximate 
an arbitrary continuous function and mapping. 

Indeed, modeling a linear or nonlinear structural 
system with neural networks has been increasingly 
recognized as one of the system identification 
paradigms [4]. 

Although several neural-network-based strategies 
are available for qualitative evaluation of damages 
that may have taken place in a structure [5], it was 
not until recently that a quantitative way of detecting 
damage with neural networks has been proposed. 
Yun et al. presented a method for estimating the 
stiffness parameters of a complex structural system 
by using a back-propagation neural network with 
natural frequencies and mode shapes as inputs [6]. 
Unlike any conventional system identification 
technique that involves the inverse analysis with an 
optimization process, those strategies proposed by 
Xu et al. and Wu et al. with the direct use of dynamic 
responses can give the identification results in a 
substantially faster way and thus provide a viable 
tool for the on-line identification of structural 
parameters for an real-time monitoring system [7, 8]. 

This study is aimed at the development of a strain-
based identification strategy for the structural 
monitoring. The stiffness parameter of each 
structural member and the damping coefficients of 
the structural system are to be identified. The 
performance of the three-step direct soft parametric 
identification (DSPI) methodology is evaluated with 
a tower type of truss structure with a known mass 
distribution. 
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Fig. 1: Parametric identification modeling based on neural networks with dynamic macro-strain responses 

 
 
2 Member Level Parametric 
Identification Using Macro-strain 
Measurement 
A linear, N-DOF viscously-damped existing structure 
is referred to an object structure. To facilitate the 
member level identification process, a reference 
structure and a number of associated structures that 
have the same overall dimension and topology as the 
object structure are created. The member level 
parameter identification strategy is carried out by 
three steps as shown in Fig. 1. 

In Step 1, a strain-based emulator neural network 
(SENN) is constructed and trained using the time 
series of free vibration-induced macro-strain 
responses of the reference structure under a certain 
initial condition. Under an initial displacement X0 

and a zero velocity, structural free vibration can be 
described by,   

0=++ KXXCXM &&& , 00 XXt == , 00 ==tX&   (1) 
where the matrices M, C and K are mass, damping, 
and stiffness matrix, respectively; and X&& , 
X& and X  are the acceleration, velocity, and 

displacement vector, respectively. 
The discrete time solution of the state equation 

corresponding to Equation (1) can be written as  

1−= k
AT

k ZeZ , ( )Kk ,,1L=       (2) 
in which Zk  and Zk-1 are the state variables at time 
instants, kT and (k-1)T, respectively; and A is the 
system matrix.  

Equation (2) indicates that, for the reference 
structure, the displacement response at time step k is 
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uniquely and completely determined by the 
displacement and velocity at time step k-1. 
Moreover, the velocity response at time step k-1 is 
determined by the displacement change over the time 
interval from time step k-2 to k-1. For a truss 
structure, the strain response of a member at a certain 
time step is definitely determined by the 
displacement responses at its two ends at the same 
time step, therefore, the strain response at time step k 
is fully determined by the strain responses at time 
steps k-1 and k-2. A SENN can be trained to 
represent the mapping between the strain vector at 
time step k-2, k-1 and k of the reference structure and 
can be a non-parametric modeling of the reference 
structure as described in the following equation, 

( )12 , −−= kk
f

k SENN εεε , ( )Kk ,,2 L=  (3)                                  

where f
kε  is the forecast strain at time step k  by 

the trained SENN.  
In Step 2, consider M associated structures that 

have different structural parameters from the 
reference structure in Step 1. On one hand, the free 
vibration-induced strain responses of an associated 
structure m at time step k under the same initial 
condition as used in the reference structure can be 
determined by numerical integration. On the other 
hand, a predicted strain responses can be determined 
according to Equation (3). It is expected that the 
predicted responses are quite different from those 
computed by numerical integration because of the 
parameter difference. Their difference vector at time 
step k  can be evaluated by 

( ) ( ){ } km
f

km
TN
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,, εε −== LL , 

Mm ,,2,1( K= , mNj ,,1L= , ),,2 Kk L=  (4)             
where Nm represents the total number of structural 
members which strain responses are measured. The 
superscript T in equation (4) denotes the transpose of 
a vector. Similar to the previous studies of Xu et al. 
[8], corresponding to the associated structure m, an 
evaluation index called the root-mean-square 
prediction difference vector (RMSPDV) of strain is 
adopted.  It is obvious that RMSPDV depends on 
the structural parameters of the associated 
structure m and should be a function of structural 
mass, stiffness and damping matrices. The mass 
matrix is considered as a known constant in this 
study, the evaluation index is then completely 
determined by Km and Cm. The parametric evaluation 
neural network (PENN) is constructed and trained to 
describe the mapping between the evaluation index 
and the structural parameters:  

( ) ( )mmm EIPENNCK =,        (5)                     

After the PENN has been successfully trained with 
the associated structures in Step 2, it will be applied 
in Step 3 into the object structure to forecast the 
structural parameters with inputs, RMSPDV, 
determined from the trained SENN and the strain 
measurements of the object structure.  

In this study, it is assumed that the damping 
matrix of the reference structure, associated 
structures and object structure can all be 
characterized by the Rayleigh damping theory. In 
general, direct identification of the stiffness matrix 
of a structure is inefficient due to its complex 
geometry and member connectivity. However, the 
direct identification of member stiffness will reduce 
the total number of unknowns. Equation (5) can be 
rewritten in the following form, 
( )( ) { }( )mmmmNn EIPENNbakkk

m
=,,,,,1 LL ,  

),,1( mNm L=           (6) 
The macro-strain measurements of the reference 

structure, associated structures are determined by 
numerical integration. In practice, the strain 
measurements of the object structure can be 
measured with long-gauge FBG strain sensors or 
other sensors mounted on the structure members. 
They are considered available in this numerical 
simulation study by numerical integration.  
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Fig. 2: Truss structure 

 
Table 1. The physical properties for all members of 

the reference structure 

 
 
3. Numerical Illustration 
 
3.1 Object Structure 

Modulus of elasticity  229.8 GPa 
Area of cross section  19.35×10-6 m2 
Density 7800kg/m3 
Lumped mass on joint 3, 4, 5, 6 20,000 kg 
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The two-dimensional truss structure with 10 
members and 6 joints shown in Fig. 2 is treated as the 
object structure. Two joints are pin-supported at the 
bottom of the truss structure. It has a total of 8 
degrees of freedom. Considering one sensor is 
mounted on the surface of each member, a total of 10 
strain measurement time series can be provided by 
the sensing system. The material density and area of 
cross section of every member and the lumped mass 
at joints 3, 4, 5, 6 of a reference structure that can be 
estimated from the as-built design drawings of the 
object structures are shown in Table 1. The first two 
natural frequencies of the reference structure are 
4.627Hz and 8.075Hz, respectively. The first two 
mode damping ratios are assumed to be 0.1% and 
0.15%, respectively. The Rayleigh damping 
coefficients can be respectively calculated to be 

012.0=a sec-1 and 51044.5 −×=b sec. 
Without loss of any generality, the initial 

displacements at 8 degrees of freedom are assumed 
to be  
{ } { } )(111111110005.00 mX T−−−−×=

 .                        (7) 
The free vibration macro-strain responses of the 

reference, associated and object truss structures 
under the initial condition can be solved by 
numerical integrations with the Newmark method. 
The integration time step used is 0.002 sec and the 
sampling rate is 100 Hz, which is consistent with 
most of the current FBG interrogation systems. 
 
3.2 Nonparametric identification for the 
reference structure with SENN 
The input layer of the SENN includes the macro-
strain responses at time step k-2 and k-1 for every 
member of the truss structure. The number of 
neurons in the hidden layer is the same as that in the 
input layer. The neuron in output layer represents the 
forecast macro-strain responses at time step k. 
Therefore, for the truss structure, the input, hidden 
and output layer includes 20, 20 and 10 neurons, 
respectively. 

From the first 2 seconds of free vibration-induced 
strain responses under the initial displacement in 
Equation (7), 198 patterns of training data sets are 
constructed. Based on the error back-propagation 
algorithm, SENN is off-line trained with the training 
data sets composed of the simulated macro-strain 
responses of the reference structure. At the beginning 
of training, the connection weights between two 
adjacent layers are initialized with small random 
values. SENN can be trained to achieve a desired 
accuracy for modeling the dynamic behavior of the 
reference structure. The entire off-line training 

process takes 30,000 epochs. An adaptive learning 
schedule is adopted, in which the learning rate and 
momentum are chosen to be high (0.8 and 0.6) at the 
early stage of training and low (0.5 and 0.3) at the 
following time instances.  

To provide a quantifiable measure for the 
prediction by the SENN, the root-mean-square 
(RMS) error of macro-strain corresponding to each 
truss member are given in Table 2. It is demonstrated 
that the maximum RMS error is within 5% the RMS 
value of the corresponding macro-strain response. 
The nonparametric model of the reference structure, 
SENN, is therefore sufficiently accurate. 
 
3.2 Training of PENN for stiffness 
identification 
 
3.2.1 Evaluation index and PENN architecture 
For the purpose of parametric identification, it is a 
critical task to establish a mathematical model for 
mapping from the RMSPDV to the structural 
parameters. The PENN is organized to describe the 
mapping. The input to the PENN is the components 
of the RMSPDV corresponding to the macro-strain 
response measurement of each truss member; and the 
output is the stiffness of each truss member and the 
damping coefficients of the object truss structure. For 
the object structure shown in Fig. 2, the PENN thus 
has 10 input neurons and 12 output neurons. The 
number of neurons in the hidden layer is selected to 
be four times the number of the neurons in the input 
layer. 
 

Table 2. RMS error of macro-strain of each truss 
member of the reference structure 

 
Me
mb
er 

RMS value of 
strain by 

integration(10-6)

Absolute 
error in 

RMS (10-6) 

Relative 
error in 

RMS (%)
1 87.4 2.1 2.4 
2 80.4 1.6 2.0 
3 84.7 0.9 1.1 
4 39.8 1.8 4.5 
5 40.5 1.8 4.6 
6 105.6 3.3 3.2 
7 95.4 1.9 2.0 
8 150.6 2.4 1.6 
9 63.5 0.9 1.3 

10 66.6 1.2 1.8  
 

3.2.2 Generation of training patterns 
To generate training patterns, a significant number of 
associated structures with different structural 
properties are considered and their free vibration 
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responses under the initial displacement in Equation 
(20) are computed with the Newmark method. The 
RMSPDV of macro-strains between each associated 
structure and the output of the SENN can then be 
obtained. Because neural networks can describe 
complex mapping with satisfied accuracy within a 
certain space that is covered by the training patterns 
by interpolation and the performance of neural 
networks for extrapolation is not guaranteed, it is 
important to determine the possible range of the 
interested parameters. Suppose stiffness decrease of 
each truss element is within 20% of it of the 
reference structure and damping coefficients have a 
change within 20% of the reference structure. The 
number of the possible damage scenarios within the 
assumed interested space is infinite.  

It is critically important to prepare training 
patterns or data sets with proper sizes from the 
interested space. In general, the number of training 
patterns must be large enough to represent the 
relationship between the RMSPDVs and their 
corresponding parameters while, for computation 
efficiency, the number of training patterns ought to 
be reasonably small. An appropriate tradeoff needs to 
be established in preparation of training patterns. 
Moreover, the preparation of training patterns for the 
PENN training is generally time-consuming, 
especially for large-scale infrastructures. Selection of 
a suitable number of the training patterns from an 
interested space that includes unlimited points is still 
an open problem. In this study, 800 associated 
structures other than the three object truss structures 
are randomly selected from the interested space to 
construct training patterns for PENN training. Each 
training pattern is composed of a RMSPDV and its 
corresponding structural parameters. 
 
3.2.3 Training of PENN 
Each of the training patterns prepared above is used 
once for training of PENN at an epoch. The data is 
normalized between the ranges of 0 to 1 to make sure 
that all the data contribute evenly and to fulfill the 
criteria of the sigmoid transfer function. The training 
process took 30,000 epochs to learn the pattern 
presentation using the adaptive error back-
propagation algorithm. 
 
 
3.3 Parametric identification results with 
DSPI strategy 
After having been trained, the PENN can be adopted 
to identify the structural parameters directly from 2s 
of the time series of macro-strain responses. The 
proposed strategy differs from other traditional 
parametric identification techniques that require 

inverse analysis; it can give structural identification 
results rapidly by feed-forwarding the parallel 
computation of neural networks when several 
seconds of time series are available. This 
characteristic makes the proposed technique very 
attractive for near real-time damage diagnosis of 
structures in the frame-work of structural health 
monitoring. 
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Fig. 3: Stiffness identification results 
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Fig. 4: Absolute values of relative identification error 

distribution 
 
Table 3: Damping coefficients identification results 
 
   Object 

structure 
1 

Object 
structure 
2 

Exact 1.14 1.14 a  
(10-2) Identified 1.20 1.20 

Exact 5.18 5.17 

Dampin
g 
coeffici
ents 

b 
(10-5) Identified 5.44 4.90 

Average of absolute values 
of relative error (%) 

2.99 3.66 
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2s of the free vibration-induced macro-strain 
measurements from the two object structures are 
directly inputted to the SENN and the PENN. The 
stiffness of each truss member is identified as shown 
in Figs. 3 and 4. Table 3 shows the damping 
coefficients identification results. It can be found that 
the average relative error of the estimation for the 
entire structure is less than 4% even though the 
training pattern for the object structure is not 
included in the training patterns utilized above. 
 
 
4 Conclusion and discussion 
A three-step novel neural networks based strategy 
has been developed for the identification of structural 
parameters, member stiffness and system damping 
coefficients of a truss structure, with direct use of 
free vibration-induced macro-strain responses. 

1. The free vibration-induced macro-strain 
response at the current time step can be successfully 
forecast by a non-parametric identification model, 
strain-based emulator neural network, based on the 
strain responses at the two previous time steps. The 
rationality and theory basis for the construction of the 
strain-based emulator neural network and parametric 
evaluation neural network are explained. 

2. The parametric evaluation neural network can 
accurately identify the parameters of object 
structures, even if the object structures are not 
included in the selected training patterns. The 
average relative error in identified parameters is less 
than 5%. 

The proposed strategy does not involve any 
formulation of eigenvalue analysis for the reference 
structure and the associated structures, eigenvalue 
and mode shape extraction from the measurements or 
any optimization process that is required to solve 
inverse problems with most identification algorithms. 
Use of directly-measured vibration responses and the 
parametric evaluation neural network allows the 
parameters of engineering truss structures to be 
identified with 2s of macro-strain measurements. 
Therefore, the proposed strategy provides a viable 
tool for near real-time parametric identification or for 
on-line structural health monitoring.  

The proposed strategy is based on free vibration-
induced strain measurements, therefore, it is 
applicable for on-line identification of structures 
instrumented with long-term monitoring system and 
excited by ambient loads that can be modeled as 
stationary zero-mean Gaussian white time series 
from which structural free vibration-induced strains 
can be extracted by RD method. In the case of 

engineering structures where loads can not be 
modeled as stationary zero-mean Gaussian white 
time series, direct free vibration experiment is an 
alternative to acquire the free vibration-induced 
strain measurement, and the strategy proposed in this 
paper is also applicable. 
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