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Abstract：For large ammunitions and spacecrafts, friction moment and air resistance are major error resources in 
measuring moment of inertia (MOI). The paper proposes a novel measurement method based on compound 
pendulum, in which the whole measurement is considered as a problem of system identification, while the 
friction moment, the air resistance, and the to-be-measured MOI are considered as the system parameters to 
identify. A compound pendulum is a nonlinear kinetic system, and what is special, its excitation function is zero. 
Modern System identification technology could identify an unknown system by analyzing the relation between 
different responses and excitations. But to zero excitation, the above technology could no longer work. So the 
paper resorted to phase-plane analysis and identifies the zero excitation nonlinear system successfully. With this 
unique method, the influences of both friction moment and air resistance on the compound pendulum have 
already been taken into consideration without estimating or the measuring them in advance. 
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1 Introduction 

Moment of inertia (MOI) represents the measure 
of inertia of a rotating rigid body. It is of 
considerable significance in the study, design, and 
manufacturing of ammunitions, satellites, and other 
spacecrafts. 

Torsional pendulum method[1-13] and string 
pendulum method[14-19] are widely used in measuring 
MOI. For large ammunitions and spacecrafts, often 
heavy in weight and many of them have aerofoil and 
rudder mounted, friction moment and air resistance 
are major error resources. Methods have been taken 
to eliminate the both resistances, like gas bearings 
and vacuum cabin. But these two techniques bear the 
disadvantages of complex in structure and expensive 
in cost. So the paper tries to find a new measurement 
method.  

Because torsional pendulum method and string 
pendulum method require the axes of the measured 
object being placed vertical to the horizontal surface; 
they are suitable for large-scale object for the sake of 
safety, especially those of large length/diameter ratio. 
So we adopt compound pendulum. 

 
 

2 Composition of the measurement 
equipment 

As shown in Fig. 1, the instrument consists of 
chassis, swing shaft, bearings, connecting arms, 
supporting tray, and angular displacement sensor. Q1 
represents the axes of the swing shaft. Q2 represents 
the axes, with respect to which the MOI is measured, 
usually the axes of a cylinder-shaped object. L 
represents the distance from Q1 to Q2.  

Exert a moment onto the supporting tray and 
then release it suddenly. The deviation from the 
balance position makes the tray, together with the 
connecting arms and the to-be-measured object 
swing back and forth; that is to say, they are making 
a compound pendulum movement.  

We denote the sum MOI of the tray, arms and 
the to-be-measured object with respect to Q1 by JZ, 
the sum MOI of the arms and the tray with respect to 
Q1 by JT, the MOI of the to-be-measured object with 
respect to Q1 by JD, the MOI of the to-be-measured 
object with respect to Q2 by JS. The angular 
displacement sensor recodes the variation of angle 
with the time and the recorded data are stored in a 
computer. With these data, we can obtain JZ (for 
detailed calculation, please read Section 2 and 
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object to be measured 

Fig.1  Composition of the measurement Equipment 
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Section 3). Subtract JT from JZ, we have 
 JD=JZ—JT (1) 
Further, we can get 
 JS = JD—mD·L2 (2) 
In which, JT is a known quantity; mD represents the 
mass of the to-be-measured object, which has usually 
been measured in advance.  

For large-scale ammunitions or spacecrafts, the 
friction moment of bearings and the air resistance, 
acting as damping that prolong the swing period and 
reduce the swing angle, must not be ignored. In 
Section 3, we establish the kinetic model of 
pendulum system considering friction moment and 
air resistance, and any conclusion drawn in Section 3 
suits the equipment illustrated in Fig. 1. 

 

 

3 Kinetic model of compound 
pendulum considering friction moment 
and air resistance 

The compound pendulum is a rigid body swings 
around an fixed axes that is parallel to the horizontal 
surface, shown in Fig. 2, in which C is the centroid 
of the rigid body, O is the intersection point of the 
fixed axes and the paper (for convenience, we can 
also use O to represent the fixed axes). We denote the 

pendulum’s MOI with respect to O by J, the mass of 
the pendulum by m, the distance from O to C by S, 
and the included angle between OC and OY by 
φ with anticlockwise direction as positive, the initial 
angle of OC by φ0 (not shown in Fig. 2). OY is in the 
same direction as the gravity.  

We can describe the compound pendulum 
movement as the equation 
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in which, t represents the time, g the acceleration of 
gravity, M the friction moment of bearing. Rx 
represents the air resistance.  

When a well-lubricated bearing works under 
medium load and medium rotate speed, M is 
proportional to the radial load of the bearing [18], so 
we have 
 ( )φμ cos⋅⋅= mgM  (4) 
in which,  μ  is a proportional coefficient with unit of 
m and greater than 0, relating to the type and the 
pitch circle’s diameter of the bearing. 

For a body making a translation movement, the 
air resistance is proportional to the square of its 
speed [19]. So we can reach the relation 
  (5) 2vRx ∝
in which, v represents the average speed of all the 
mass points on the compound pendulum. Because 
every mass point swings around O, easily we have 
 ∝v tddφ  (6) 
Thus, Rx can be expressed as 
 ( 2dd tKRx φ⋅= )  (7) 
in which, K is a parameter relating to current density 
of air, structure of the instrument, fixture condition 
and the shape of the to-be-measured object. Because 
the speed of each mass point is much too much less 
than the velocity of sound, K is independent of df /dt. 
Both friction moment and air resistance trend to 
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Fig.2A compound pendulum 
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decelerate the compound pendulum movement 
   Now, from (3) to (7), we can get the complete 
form of the kinetic model of the compound 
pendulum system 
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This is a two order nonlinear system of single 
variable φ respect to time t, in which m，g and S are 
already known，while K，μ and J are the parameters 
to identify. We notice that the right side of (8) is 
equal to zero. That means there is no excitation input 
to this nonlinear system. The system is only driven 
by its initial deviation of balance condition. We shall 
rationally name this kind of system as “Zero 
excitation nonlinear system” or “Naught excitation 
nonlinear system”. Easily we can also have the 
concept of “Zero excitation nonlinear system 
identification” and “Naught excitation nonlinear 
system identification”. 

We know that modern system identification 
technology could identify an unknown system by 
analyzing the relation between different responses 
and excitations[20]. But to a zero excitation like (8), 
the present system identification technology could no 
longer work. Thus we resorted to phase-plane 
analysis [21]. Define 
 x = φ ,      y = tddφ  (9) 
Substitute (9) into (8), yields 

 ( ) ( )
y

cyxbxa
x
y 2cossin

d
d −−−

=  for  (10) 0≥y

 ( ) ( )
y

cyxbxa
x
y 2cossin

d
d ++−

=  for  (11) 0<y

where 
 a = mgS / J,  b = μ mg / J,  c = K / J  (12) 
When initial condition (x0, y0) is given, we can solve 
the ordinary differential equation (10) and (11) as 
follows 
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  (16) 
Employing so-called “sewing method”, we can 

draw the phase-plain of a compound pendulum 
movement according to (13) and (14). Fig. 3 is the 
phase-plain of a compound pendulum movement 
with g=9.8m · s-2, J = 1000kg · m2, μ =0.01m, 
m=500kg, φ 0= -0.5rad, S=1m, K=10N·m·s2. From 
this spiral-like curve, we see that the sequential spans 
of angle decrease one by one, and that the compound 
pendulum movement is a process of energy 
dispersion.  
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Fig. 3 Phase-plain of compound pendulum 

A

B 
D

E

 
 

4 Identification of the system 
In this section, we discuses the approach to the 

identification of the system , or the definition of MOI 
J from the function φ (t), the variation of angle with 
the time, acquired by the angular displacement 
sensor. 

Let’s consider Fig.3, in which the curve ABC 
represents the swinging of the compound pendulum 
from the initial point to the highest point on the other 
side. A represents the moment when the compound 
pendulum starts to swing. Abscissa of A is φ 0 and 
ordinate is 0. B represents the very moment when the 
compound pendulum reaches the balance point. 
Abscissa of B is 0 and ordinate is ωΒ . We define D 
which abscissa is 0.8φ 0 and ordinate is ωD, and 
define point E which abscissa is 0.4φ 0 and ordinate  
is ωE. We know that 

0d
d

== φ
φω
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d
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)

  (15) 

All points on the curve are consistent with (13), 
so substitute the coordinates of B, D, E, and A into 
(13), we obtain 
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Where p1=(-2bc+a), p2=(2ac+b), p3=2c2+0.5. 
Take (18), (19), (20), and (21) as one system of 

equations. To solve this system for four unknowns, a, 
b, c, and C1, we take the following steps: 
 Step 1: Take (19), (20), and (21) as one system 
of equations and solve this system for three 
unknowns, a, b, and C1. Then a, b, and C1 can be 
analytically expressed in terms of c, which is still 
unknown. (The expressions are too complex to 
present here.) 

Step 2: Substitute the expressions of a, b, and C1 
we obtained in Step 1 into (18), yields a new 
equation that has only one unknown c. 

Step 3: Numerically solve the new equation we 
obtained in Step 2 for c by using a certain method of 
computational mathematics, like Newton’s method or 
Gauss-Seidel’s method[22]. 

Substitute c obtained in Step 3 into the 
expression of a, b, and C1 obtained in Step 1. Thus 
we have solved all the equations. According to (12), 
we can define the MOI of the compound pendulum 
 J = mgS / a (22) 

The actual phase-plain will be obtained from the 
experiment and must suffer from a certain amount of 
error. In order to verify the precision of above 
method, we conducted numerical simulations[23]. The 
results of the numerical simulations showed that the 
measurement method is of a satisfactory precision. 
 
 
5 Conclusions and discussions 

We propose a novel measurement method based 
on compound pendulum. We consider the whole 
measurement as a problem of system identification, 
and consider the friction moment, the air resistance, 
and the to-be-measured MOI as the system 
parameters to identify. With this method, we can 
complete the measurement with high precision, 
considerable ease and safety. Also, we need not to 
estimate or measure the friction moment of bearings 
and the air resistance, while have already taken their 
influences into consideration.  

In this paper, we put forward the new concept of 
“Zero excitation nonlinear system identification” or 
“Naught excitation nonlinear system identification”. 
The author believes that this concept is not 
something eccentric; it may theoretically be a large , 
even important category in the field of system 

identification, and it will gradually be noticed by the 
researchers and professors of system identification. 
We have managed to accomplish the zero excitation 
nonlinear system identification of a certain form 
(equation (8)). The author hopes this effort to be a 
beneficial start to a thorough research on the whole 
category of “zero excitation nonlinear system 
identification”.  
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