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Abstract — The aim of this work is to evaluate the 

performance of an image compression system based on 
wavelet-based subband decomposition. The compression 
method used in this paper differs from the classical 
procedure in the direction where the scalar quantization 
of the coarse scale approximation sub-image is replaced 
by a discrete cosine transform (DCT) based quantization. 
The images were decomposed using wavelet filters into a 
set of subbands with different resolutions corresponding 
to different frequency bands. The resulting 
high-frequency subbands were vector quantized 
according to the magnitude of their variances. The coarse 
scale approximation sub-image is quantized using scalar 
quantization and then using DCT-base quantization to 
show the benefit of this new optional method in term of 
CPU computationa1 cost vs restitution quality. 

 
INTRODUCTION 

 
Image compression consists in minimizing the 

volume of data needed for the image representation. The 
objective of image compression techniques is the 
reduction of the amount of bits required to represent an 
image, with or without the loss of information. 
Compression can be achieved by transforming the data, 
projecting it on a basis of functions, and then encoding 
the resulted coefficients [19]. A common way to realize 
the encoding is to quantize the coefficients and apply 
some lossless compression such as Huffman on the 
quantized coefficients. Another way to compress an 
image is to use the subband coding method. This method 
splits the coefficients according to distinct levels of 
information description in order to quantize separately 
according to its own special properties and planned 
compression ratio for each level. The use of subband 
decomposition in data compression and coding is widely 
used in the image compression field [1]. The scalar or 
vector quantization (QV) are the typically quantization 
approach to achieve the encoding phase. 

 
As they exhibit the orientation and frequency 

selectivity of images, the wavelets are considered as a 
powerful signal processing tool to exploit the affectivity 
of the subband image coding [2 to 4]. Applying the 
wavelet transform on images does not reduce the amount 

of the data but it provides a representation of the image to 
be compressed which is more useful to be compressed. 
The possibility of compression by quantizing and 
encoding the wavelet coefficients relies on the 
assumption that details at high resolution are less visible 
to the eye and therefore can be eliminated or 
reconstructed with low-order precision. 

 
The subband decomposition supplements the 

representation base transformation by allowing several 
abstraction levels. This decomposition is achieved using 
Mallat’s pyramidal multiresolution architecture [3]. After 
the image was decomposed, the wavelet coefficients 
giving the high-frequency coefficients were vector 
quantized whereas the low-frequency coefficients 
(approximation image) where generally scalar quantized. 

 
The compression method, which is being used in this 

paper, differs from this classical procedure in the 
direction where the scalar quantization of the 
approximation image is replaced by discret cosine 
transform (DCT) based quantization. 

 
A predetermined compression ratio to be used for 

each shape in the pyramidal structure is given, and 
different sizes and dimensions of codebook are tested. 
The results are given when using scalar quantization and 
also when the a DCT applied before encoding the 
low-frequency coefficients, in order to demonstrate that 
this technique enable much lower CPU computationa1 
cost with similar quality and compression rate. 
 

SUBBAND IMAGE DECOMPOSITION  
BASED ON WAVELETS 

 
Multiresolution analysis based on Wavelets is 

introduced by Meyer [5], Mallat [6], and Daubechies [7] 
in their construction of orthogonal wavelets. From then 
on, the multiresolution nature of the discrete wavelet 
transform is proven as a powerful tool to represent 
images decomposed long the vertical and horizontal 
directions using the pyramidal multiresolution scheme. 
Using this analysis, the image is decomposed with 
different resolutions into a set of subimages called shapes 
corresponding to different frequency bands. 
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Two-Channel Filter Banks 
 
Consider the one-dimensional discrete signal Si(n) 

shown in Fig. 1 where i denotes the resolution level. The 
Mallat’s pyramidal decomposition[3] decomposes the 
discrete approximation Si(n) into the approximation at a 
coarser resolution Si+1(n) and the detail signal Di+1(n) 
which corresponds to the difference of information 
between the resolution levels i and i+1. The lower 
resolution signal Si+1(n) is obtained by halfband lowpass 
filtering Si(n) followed by downsampling by a factor of 
two in order to make it fullband again. In a similar 
fashion, the higher resolution signal Di+1(n) is the 
downsampled version of the signal resulting from 
highpass filtering. The transfer functions fl(n) and fh(n) 
correspond to the impulse responses of the lowpass and 
highpass filters used to realize the subbands 
decomposition for any resolution level. 

 

 
 

Fig. 1. Basic two-channel filter bank structure. 
 
 
As depicted in Fig. 1, the signal reconstitution is 

achieved by upsampling the signals and Di+1(n) through 
insertion of zeros, followed by the application of the 
lowpass and highpass synthesis filters with their impulse 
responses gl(n) and gh(n); respectively. 

 
Image Representation in the Wavelet Base 

 
Multiresolution decomposition on k levels of a two-

dimensional signal results into a set of 3k+1 subbands 
defining the DWT representation on k levels of the 
discretized image. As shown in Fig. 2, the 
two-dimensional wavelet analysis consists of 
successively applying the one-dimensional DWT, using a 
row-column approach. 

 

 
 

Fig. 2. One level of subband image 
decomposition. 

 

For a given 2n x 2n image Si(n, m), wavelet 
decomposition is performed by convolving the rows of 
this image with the one-dimensional impulse responses fl 
and fh before repeating this operation according to the 
vertical direction on the obtained two subbands. Because 
of the downsampling with a factor of two, we obtain at a 
given resolution level, four shapes from the two-
dimentional decomposition of one approximation shape. 
The final size of each of these shapes is 2n-1 x 2n-1. 
Subband Si+1 contains the smooth information and the 
background intensity of the image and the subbands 
Dx

i+1; Dy
i+1; and Dyx

i+1 contain the detail information of 
the image. The subband Si+1 corresponds to the lowest 
frequencies, Dx

i+1 gives the horizontal high frequencies, 
Dy

i+1 gives the vertical high frequencies, and Dyx
i+1 the 

high frequencies in both directions. 
 

 
 

Fig. 3. Two levels of subband decomposition 
of 512 x 512 image. 

 
Fig. 3 shows a two-level wavelet decomposition 

scheme for a 512 x 512 digital image. At the first level of 
the decomposition, we obtain 256 x 256 subbands; three 
shapes representing vertical, horizontal, and diagonal 
edges; and an approximation shape which is decomposed 
at the second level, in a same fashion, into four smaller 
shapes (128 x 128 subimages). As Fig. 3 depicted it, 
representing the wavelet coefficients produced by a 
k-level decomposition needs as many pixels as the 
original image contains. 

 
To compute an exact reconstruction of the original 

image, one uses the two dimension extension of the 
algorithm described in the section above (see Fig. 1). At 
each step, the image Si is reconstructed from Si+1, Dx

i+1, 
Dy

i+1, and Dyx
i+1. Between each column of the i+1th 

resolution shapes, we add a column of zeros, convolve 
the rows with a one dimensional filter, add a row of zeros 
between each row of the resulting image, and convolve 
the columns with another one-dimensional filter. For 
details, refer to [3]. 

 

fl y ↓ 2 

fh y ↓ 2 

fl x ↓ 2 

Si 
fl y ↓ 2 

fh y ↓ 2 

fh x ↓ 2 

Si+1 

xy
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STATISTICAL PROPERTIES OF THE  
WAVELET COEFFICIENTS 

 
In this section, we show how to use the sensitivity of 

the human visual system as well as the statistical 
properties of the image to optimize the coding by the 
wavelet representation. This section is dedicated to 
determine the appropriate quantization factors for each 
resolution level and shape. 

 
Statistical Properties 

 
The probability density function (PDF) is frequently 

used to parameterize the quantization method in each 
subband [11]. Fig. 4 shows the highband coefficient PDF 
of a 512 x 512 image (Fig. 3) for level 2 and both 
decomposition directions. 

 

 
Fig. 4. The probability density function (PDF) of 

the highband Wavelet coefficients (horizontal, 
vertical and both direction). 

 
Examining lots of gray-level’s portrait images shows 

that the distribution of the wavelet coefficients remains 
similar for all the shapes at the same level or at different 
levels, excluding the "approximation" subband. From the 
distribution of the highband wavelet coefficients, it can 
be seen that most of the coefficients lie in a narrow range 
around the origin. 

 
Table. 1. Wavelet coefficient variance for several 

resolution levels, according to each direction. 
 

Level Shape Lenna Apple Cluster 
1 x 33.00 3.43 1.14 
1 y 11.97 5.31 2.12 
1 xy 7.95 0.54 0.05 
2 x 42.94 7.01 3.50 
2 y 20.77 10.30 4.18 
2 xy 12.08 2.51 0.75 
3 x 95.34 11.89 11.10 
3 y 71.20 28.08 16.43 
3 xy 24.64 5.61 3.33 
4 x 141.74 22.63 31.37 
4 y 143.47 67.39 45.05 
4 xy 57.81 13.96 9.78 

 
Another way to judge the importance of the 

information contained in each subband is to estimate the 
dispersion magnitude of the wavelet coefficients. 
Table. 1. contains the variance values calculated for three 

example images, according to each decomposition 
direction and various resolution levels. 

 
One can see from Table. 1 that the variance of 

diagonal decomposition is lower than the horizontal and 
vertical decompositions. In addition, the variances 
decrease with the increasing of resolution level. 
Estimating energy distribution and dispersion magnitude 
of the wavelet coefficients makes it possible to better 
design an appropriate quantization strategy. 

 
VECTOR QUANTIZATION OF WAVELET  

COEFFICIENTS 
 
Vector Quantization (VQ) [9] has been widely known 

for its excellent rate-distortion performance in the lossy 
data compression field. Several approaches have been 
reported for image coding by VQ of transform 
coefficients rather than the image pixels [10-11] and are 
referred to as transform vector quantization (TVQ).  

 
Principle of VQ 

 
The objective of vector quantization is to build a set 

of N vectors Yi (i = 1 to N) called Codebook, allowing an 
optimal description of the n vectors Xj (j = 1 to n) which 
compose the image to be vector quantized. This 
quantization method is a form of pattern recognition or 
matching where an input pattern is approximated by one 
standard template of a predetermined codebook. The 
Linde, Busu and Gray (LBG) algorithm [8] is frequently 
used to perform codebook design for image compression. 
This technique is an iterative method which involves 
creating a letter reference to indicate which of the 
codebook vector Yi is nearest to each subimage (or 
vector) Xj. This letter reference is refined step by step to 
converge towards an optimal alphabet which allows the 
weakest error between the original shape and the 
reconstructed one. The encoding and decoding scheme in 
Fig 5 demonstrates the use of VQ. 

 

 
 

Fig. 5. Vector quantization encoding and  
decoding scheme 

 
In case of the multiresolution decomposition, it is 

more judicious to group and train together the vectors in 
each shape according to each subband properties. As 
shown before, the statistical properties are contrasted 
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with the subband direction and the resolution level. 
Therefore, the LBG algorithm is used with additional 
rules that take into the count the statistical properties of 
each shape when designing the codebooks. 

 
Subband Codebook Design 

 
As the VQ encoding consists in approximating the 

sequence to be encoded by a vector belonging to the 
codebook, the design of this last one is an essential 
process in image compression approaches combining 
wavelet decomposition and vector quantization. 
Considering the preceding results, wavelet coefficients 
have to be coded hierarchically according to their 
location (in the sense of pyramidal level and texture 
shape) in order to optimize the quality of the final 
reconstructed image; thus, the designed codebooks are 
also called subband codebooks. We use this quantization 
method only for the subbands containing detail 
informations. The sizes of vectors and codebooks are 
chosen according to the suspected quantization impact on 
the quality of the reconstructed image. We chose to 
perform a dyadic progression of the codebook and vector 
sizes according to the resolution level and texture shape. 
Thus, the codebook size (number of template vectors) 
decreased with the increasing of the resolution level and 
the vectors of the diagonal shapes are larger than those of 
the lateral shapes. These rules are formulated below 
(Eq. 1): 

 
 NvL(s) = NvL(st) SHR [sNvL · (si-s)] 

NvD(s) = NvD(st) SHR [sNvD  · (st-s)] 
 

KxL(s) = KxL(st) SHL [skL · (st-s)] 
KyL(s) = KyL(st) SHL [skL · (st-s)] 
KxD(s) = KxD(st) SHL [skD  · (st-s)] 
KyD(s) = KyD(st) SHL [skD  · (st-s)] 

(1) 

 
where 

 
NvL(s): Vector count for a lateral shape at level s. 
NvD(s): Vector count for a diagonal shape at level s. 
sNvL: Dyadic step of the lateral vector count. 
sNvD: Dyadic step of the diagonal vector count. 
skL: Dyadic step of the lateral vector dimensions. 
skD: Dyadic step of the diagonal vector dimensions. 
st: Target resolution level. 
KxL(s), KyL(s): Vector dimensions for a lateral shape at 

level s. 
KxD(s), KyD(s): Vector dimensions for a diagonal shape 

at level s. 
num SHL cnt: Multiply num by 2, cnt times 
num SHR cnt: Divide num by 2, cnt times 

 
According to these rules, the size of the vectors 

increase with a factor of 4sKL (or (2×2)sKL) while their count 
decreases with a factor of 2sNvL (L is indicative of the 
lateral shapes; replace L by D for the diagonal shapes). As 
to case where the vector count is null, the shapes will not 
be coded and thus, no codebook is designed. 

Two parameters relating to the compression ratio 
have to be defined; the codebook size which depends on 
the number and size of its vectors and the size of the 
partition (liste of the references to the codebook vectors 
in place of the original vectors of the image) which 
depends on the shape dimension and codebook size. 

 
Let τ(s), T(s), and ρ(s) be, respectively, the ratio 

compression between shape and its partition, the shape 
dimension in pixels and the codebook size; s is the 
resolution level. We can thus give: 
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with 
  K(s) = Kx(s)·Ky(s) 

Kx(s) = Kx(st) SHL [sk · (st-s)] 
Ky(s) = Ky(st) SHL [sk · (st-s)] 
Nv(s) = Nv(st) SHR [sNv · (st-s)] 
Nv(s) = Nv(st) SHR [sNv · (st-s)] 

(5) 

 
The factor of 8 is due to the use of 256 gray levels for 

the image color representation. s0 is the initial resolution 
level; thus, T(s0) is the size in pixels of the image to be 
compressed. Nv(s) is the number of vectors in the 
codebook at the resolution level s. Bit count we need for 
indexing Nv(s) codebook vectors is given by B(s). The 
dimension in pixels of each codebook vector at the 
resolution level s is given by K(s). Variables sNv and sk 
correspond, respectively, to sNvD  and skD  for diagonal 
shapes and sNvL and skL for lateral shapes. 

 
Thus, one can deduce, according the target resolution 

level st, the compression ratio relating to the partitions 
and the size of codebooks as follows: 
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QUANTIZATION OF THE LOW-PASS  

BAND COEFFICIENTS 
 

The sensitivity of the final reconstructed image 
quality to the quantization errors is more noticeable at 
lower levels (approximation shape), which necessitates 
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higher reconstruction quality. The lowband wavelet 
coefficients can be quantized using lossless data 
compression algorithms like Huffman coding [13] or 
LZW (Lempel-Ziv-Welch) [14]. However, the real need 
to obtain increasingly high compression ratios led us to 
seek methods of compression of the lowband image 
which would bring only one low distortion relative to the 
compression ratio profit. Scalar quantization (SQ), 
among other lossy compression methods, gives us rather 
appreciable results [11-12]. SQ corresponds to the 
particular case where codebook vector length is reduced 
to 1. We actually noted only one weak degradation 
compared to the improvement of the ratio compression 
but we also noticed a considerable disadvantage of the 
Scalar Quantization which is the slowness of its 
execution. Since the approximated image (lowband 
shape) has the same statistical and psychovisual 
properties as that of an ordinary image, we tested a DCT-
based quantization method. 
 
DCT-based Image Quantization 

 
The discrete cosine transform (DCT) helps separate 

the image into parts (or spectral sub-bands) of differing 
importance (with respect to the image's visual quality). 
This allows for lossy compression of image data by 
determining which information can be thrown away 
without too much compromising the image. The DCT is 
used in many compression and transmission codecs, such 
as JPEG and MPEG [15-16]. Pixel loss is due to the 
"zig-zag" sequence used to balancing the quantization of 
the DCT coefficients and not to DCT transform. When 
the classical DCT-based compression method leads to 
arrange the coefficients according to that weight 
decreasing sequence, our method affects the same weight 
to the whole coefficients. The reason is that the few of 
detail information remaining in the lowband coefficients, 
after a strong compression, must be preserved as well as 
possible. 

 
The DCT coefficients we obtained are gathered into 

vectors of the same frequency band in order to have a 
well balanced quantization. To achieve the compression, 
each of the 8×8 DCT coefficients is uniformly quantized 
in conjunction with a 64-element quantization table (refer 
to [18] for details). The bit allocation needed to code this 
table is given in Equ. 8: 

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅
= Q

float
IT L

B
BB

64
2  (8) 

 
where BT is the bit allocation we need to code the 
64-element quantization table, BI is the image size in bits, 
Bfloat is the number of bits allowing to code a float and LQ 
is the quantization level count of DCT coefficient. 

 
 
 

EXPERIMENTAL RESULTS 
 
The resulting images were evaluated by the peak 

signal to noise ratio (PSNR), defined as 

 

( )∑∑
= =

−
= W

i

H

j
ijij aa

WH
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1 1

2

2

10

ˆ1
255log01  (9) 

where 255 is the peak gray level of the image, aij and 
âij are the pixel gray levels from the original and 
reconstructed images, respectively, and W×H is the total 
number of pixels in the image. 

 
Fig. 6 represents the peak signal to noise ratio 

obtained when reconstruct LENNA image from its 
second level decomposition. All the wavelet coefficients 
that correspond to the detail information are replaced by 
zero. This preliminary test allows us to identify the filter 
potentially giving the best reconstitution quality. 
According to the figure above, the filter which is used for 
the following experiments is the 7th order Daubechies 
filter [7]. 
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Fig. 6. PSNR of LENNA image reconstitution for 
various types of filters when all highband shapes 

are discarded 
 
The aim of an image compression is to reduce data 

size while keeping a good enough quality of the image 
restitution. Thus, we need to appreciate the relation 
binding the compression rate we can obtain for the 
various parameter setting. 

 
Table. 2. PSNR of LENNA image reconstitution 

according to vector count and dimensions. 
 

Initial Vector count : Nv(0)= KL(2), KD(2) 2 4 8 16 32 64 128 256 
2x2 . 2x2 31.7 32.4 33 33.9 34.7 35.6 36.5 37.6 
2x2 . 4x4 31.7 32.4 32.9 33.7 34.5 35.4 36.4 37.8 
4x4 . 4x4 31.5 31.8 32.1 32.6 33.5 34.7 36.8 42.3 
4x4 . 8x8 31.5 31.8 32.2 32.7 33.7 35.1 37.1 42.3 
8x8 . 8x8 31.5 31.7 32.3 33.3 36.3 42.3   
8x8 . 16x16 31.4 31.7 32.3 33.6 36.6 42.3   

 
The aim of an image compression is to reduce data 

size while keeping a good enough quality of the image 
restitution. Thus, we need to appreciate the relation 
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binding the compression rate we can obtain for the 
various parameter setting. Table. 2, and Table. 3, show 
the PSNR and the compression ration, respectively, we 
obtain for various number and dimensions of the 
codebook vectors. The compression ratio is expressed in 
the form of equivalent Bit per pixel (BPP). 
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4x4, 4x4

2x2, 4x4
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Fig 7. PSNR of LENNA image reconstitution 

according to vector count and dimensions 
 
Fig. 7 shows that the PSNR increases with the 

increase in the number of initial codebook vectors. The 
curve tends towards a line for low values of the vector 
sizes and towards an exponential curve for higher vector 
sizes. 

 
Table. 3. BPP of a 256x256 image reconstitution 

according to vector count and dimensions. 
 

Initial Vector count : Nv(0)= KL(2), KD(2) 2 4 8 16 32 64 128 256 
2x2 . 2x2 0.588 0.677 0.777 0.898 1.062 1.312 1.734 2.5 
2x2 . 4x4 0.58 0.66 0.753 0.875 1.05 1.335 1.839 2.781
4x4 . 4x4 0.562 0.625 0.73 0.921 1.285 1.992 3.386 6.156
4x4 . 8x8 0.571 0.642 0.768 1.003 1.458 2.349 4.116 7.632
8x8 . 8x8 0.676 0.853 1.202 1.894 3.274 6.029   
8x8 . 16x16 0.723 0.946 1.387 2.266 4.02 7.524   
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Fig. 8. BPP of a 256x256 image reconstitution 

according to vector count and dimensions. 
 
Fig. 8 shows that the curve of the total number of bits 

by pixels (the codebook are taken into account) 
according to the initial vector number takes an 

exponential form with an increase of the base according 
to the growth of the vector sizes. The exponential form is 
due to the space allocated to codebook. Thus, the curves 
will tend towards lines when the image size increases. 
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Fig. 9. PSNR of LENNA in function of BPP when 

only suband vector quantization is performed, 
when DCT quantization (DCTQ) is used in 

addition, and when SQ is use in place of DCTQ. 
 
Fig. 9 depicts the PSNR we obtain in three cases: 

when only the suband vector quantization (SBVQ) is 
performed and the lowband image is preserved 
unchanged, when in addition of the SBVQ, a scalar 
quantization (SQ) is accomplished, and finally, when a 
DCT-based quantization is used in place of the SQ. 
Whole of these techniques are achieved for compression 
ratios varying from 37% to 95%. The PSNR when using 
DCTQ is globally little bit lower then those obtains 
performing a SQ for the lowband shape. 
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Fig. 10. CPU computationa1 time according to the 
quantization method (DCTQ or SQ) used for the 

lowband image. 
 
Fig. 10, shows saving of time that one obtains using 

the DCT-based quantization. We notice that even gained 
CPU computational time is not linear, it is always 
positive. Compared with the SBVQ-SQ method, the 
DCT-based quantization of wavelet coefficients 
performed equally well or even better quality restitution 
with improved CPU computational time. 
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CONCLUSION 
 
Several works [19-20] proposed hybrid methods that 

perform the signal processing in a transform domain and 
combine vector quantization with a DCT-based 
quantization. The image coding method we developed in 
this work also combines the subband vector quantization 
and a DCT-based quantization in the wavelet domain. 
Experimental results we obtain show an appreciate profit 
in CPU computational time for the same restitution 
quality. This benefit can be very useful when digital 
signal processors (DSP) have to provide the necessary 
computational capabilities in very weak duration. 
Embedded image processing systems and highrate video 
transmissions are some of the applications which need 
these capabilities. 

 
For its fast processing capabilities, our image coding 

method is attracting new research interests. 
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