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Abstract: - This paper concerns with the construction of a data partitioning method for a dominantly multiplica-
tive function whose values are given at the points of the Euclid space spanned by the values of its arguments.
Method uses the univariate truncation of the HDMR constructed for the logarithm of the function under con-
sideration. The geometry of HDMR is a unit hypercube whose corners are located at the nonnegative parts
of the coordinate axes. Weight function in HDMR is assumed to be just 1 for simplicity. The ultimate goal
of the partitioning is to produce N (number of independent variables) set of ordered pairs from the unique
(N + 1)–tuple data set. Although the production is approximate it works well when the function under con-
sideration is dominantly multiplicative. Each set of ordered pairs can be used to determine relevant univariate
HDMR component. This means that the N dimensional multivariate interpolation can be reduced to N number
of univariate interpolation.
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1 Introduction
Multivariance is perhaps the plague of plethora,
in approximating the functions especially when
its value is over a certain value, if the approximating
procedure is run in a computer. This is basically be-
cause of the limited capacities in memory and the ex-
ecution speed. A function approximating procedure
in computer requires a finite number of discrete in-
formation due to discrete and limited physical struc-
ture of computer although a continous function re-
quires generally denumerably infinite number of in-
formation. The discrete data to approximately de-
fine a multivariate function which has N independent
variable in its argument is a finite set of (N + 1)–
tuples each of which contains the values of the inde-
pendent variables and the corresponding value of the
investigated function respectively. Therefore the ap-
proximation for the considered function is based on
this set and obtained by using some of the existing
interpolation techniques. That is, approximation is a
single multivariate interpolation. Although there ex-
ist a lot of multivariate interpolation techniques the
knowledge accumulation on the univariate interpola-
tion is greater and greater than the multivariate case.
Hence, the univariate interpolation is more prefer-
able. This urges us to somehow convert the multi-
variate data set to univariate data sets. Univariate in-
terpolation uses a set of ordered pairs whose first and
second elements are the values of the independent
variable and the value of the related function corre-
sponding to that independent variable value. This

means that we need to somehow partition the mul-
tivariate data set to sets of univariate data. In other
words, we need to use a divide–and–conquer type al-
gorithm. Amongst several possibilities we use the
High Dimensional Model Representation (HDMR)
Method whose popularity is apparently increasing in
last decade. Here we do not use the HDMR of the
function under consideration. Instead, we use the
HDMR of the natural logarithm of the investigated
function after shifting it appropriately to take care of
the dominant multiplicative nature in the considered
function. Our basic goal here is to formulate the al-
gorithm. The numerical efficiency is beyond the aim
of this paper although our future studies will contain
various numerical implementations.

Paper is organized as follows. The second sec-
tion presents the recalling of HDMR while the third
section is about the construction of the data partition-
ing method. Fourth section finalizes the paper via
concluding remarks.

2 HDMR
The high dimensional model representation[1-10] of
a multivariate function f (x1, ..., xN) is given as

f (x1, ..., xN) = f0 +

N
∑

i1=1

fi1
(

xi1
)
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+

N
∑

i1 ,i2=1
i1<i2

fi1,i2
(

xi1 , xi2
)

+ · · · (1)

where N stands for the number of the independent
variables. If we define an Hilbert space over the
hyperprism defined by the intervals ai ≤ xi ≤ bi,
(where 1 ≤ i ≤ N and ai, bi are assumed to be
given) with the following inner product for two arbi-
trary square integrable multivariate functions in this
space, denoted by g (x1, ..., xN) and h (x1, ..., xN) re-
spetively

( f , g) ≡
∫ b1

a1

dx1...

∫ bN

aN

dxNW (x1, ..., xN)

×g (x1, ..., xN) h (x1, ..., xN) (2)

then we impose the mutual orthogonality amongst
the right hand side components of (1). W (x1, ..., xN)
in (2) stands for a product type function, that is,

W (x1, ..., xN) ≡
N
∏

i=1

Wi(xi) (3)

where we assume that the integral of each given uni-
variate factors Wi(xi) (1 ≤ i ≤ N) between ai and
bi is equal to 1 for simplification. These weight fac-
tors can be chosen discrete or continuos depending
on what we expect from the use of HDMR.

The mutual orthogonality of the HDMR compo-
nents appearing in the right hand side of (1) is suffi-
cient to uniquely determine those components. To
facilitate the analysis for the determination of the
HDMR components we define the following projec-
tion operator

P0g (x1, ..., xN) ≡
∫ b1

a1

dx1...

∫ bN

aN

dxNW (x1, ..., xN)

×g (x1, ..., xN) (4)

The orthogonality of all higher than zero order mul-
tivariate components to f0 implies that the integrals
of those components over one of their independent
variables over the related interval under the corre-
sponding univariate weight function vanish. We call
this “vanishing property”. If we now consider the
action of P0 on both sides of (1) and then utilize the
vanishing properties of the higher than zero variate
terms, and the normalized nature of the weight func-
tion factors then we can write

f0 = P0 f (x1, ..., xN) (5)

We need to define another integral operator Pi
(1 ≤ i ≤ N) for the determination of univariate
terms. It is equivalent to P0’s new form obtained
after removing the integration over xi and discard-
ing the univariate weight function factor Wi (xi). Its
action on an arbitrary square integrable multivariate
function produces a univariate function depending on
xi whereas P0 projects to a constant. The action of
this operator on both sides of (1) and the employment
of vanishing properties of all HDMR terms except
the constant one and the normalization in univariate
weight factors enable us to write

fi (xi) = Pi f (x1, ..., xN) − f0, 1 ≤ i ≤ N (6)

The bivariate and the higher multivariate HDMR
components can be determined through similar
routes although we do not intend to give them ex-
plicitly here.

3 Data Partitioning
Let us define the following discrete domain sets for
independent variables x1,...,xN

Di ≡
{

x(1)
i , ..., x

(m1)
i

}

, 1 ≤ i ≤ N (7)

where ai ≤ x( j)
i ≤ bi, (1 ≤ j ≤ mi). We can simplify

the analysis by taking all ai values as 0 and bi values
as 1 without any remarkable loss of generality since
certain linear transformations over independent vari-
ables convert all intervals to the closed interval be-
tween 0 and 1. We can now define the global domain
for our HDMR as the cartesian product of Di sets.
That is,

D ≡ D1 × · · · × DN (8)

As can be seen easily the set D contains m1...mN
N–tuples. If we denote one of these N–tuples by
d j, (1 ≤ j ≤ m1...mN) then we can write f (d j) to
mean the value of the considered function at the in-
dependent variable values appering in d j. This urges
us to define a set of (N + 1)–tuples composed as
(

d j, f
(

d j

))

for j values between 1 and m1...mN in-
clusive. In the light of these discussions we assume
that the given data set is explicitly defined as follows

F ≡

{

(

d j, f
(

d j

))

∣

∣

∣

∣

1 ≤ j ≤ m1...mN

}

(9)

This enforces us to use the following univariate
weight factors in HDMR

Wi (xi) ≡
mi
∑

j=1

wi, jδ
(

xi − x( j)
i

)

, 1 ≤ i ≤ N (10)
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where

mi
∑

j=1

wi, j = 1 (11)

and δ
(

xi − x( j)
i

)

stands for the Dirac’s delta function

positioned at x( j)
i .

To proceed more with further simplification we
can assume that the function values f

(

d j

)

(1 ≤ j ≤
m1 × · · · × mN) are all nonnegative without any loss
of generality since a translation in f gets this non-
negativity.

Now, under the nonnegative function values as-
sumption, we can focus on the HDMR of the natural
logarithm of f (x1, ..., xN) and write

ln f (x1, ..., xN) = ϕ0 +

N
∑

i=1

ϕi (xi) + · · · (12)

This enables us to write the following result for ϕ0 by
following the analysis given in the previous section

ϕ0 =

m1
∑

i1=1

...

mN
∑

iN=1

w1,i1 ...wN,iN ln f
(

x(i1)
1 , ..., x

(iN )
N

)

(13)

This formula can be put into the following concise
form

ϕ0 = S ln f
(

x(i1)
1 , ..., x

(iN )
N

)

(14)

if we define the summation operator S as follows

S ln f
(

x(i1)
1 , ..., x

(iN )
N

)

=

m1
∑

i1=1

...

mN
∑

iN=1

w1,i1 ...wN,iN ln f
(

x(i1)
1 , ..., x

(iN )
N

)

(15)

The univariate function ϕ j

(

x j

)

can not be eval-

uated analytically. Instead its values at x j = x(1)
j ,...,

x j = x(m j)
j can be determined. To this end we define

a new summation operator S j which can be derived
from S by removing the sum over x j and discarding
the factor w j,i j . This enables us to express the result
as follows

ϕ j

(

x(i j)
j

)

=
(

S j − S
)

ln f
(

x(i1)
1 , ..., x

(iN )
N

)

1 ≤ j ≤ N, 1 ≤ i j ≤ m j (16)

This set of equations define N sets of ordered pairs
such that the ordered pairs of the j–th set are defined
by the general term

(

xi j

j , ϕ j

(

xi j

j

))

. Each of these N
set of ordered pairs can be used to interpolate the cor-
responding univariate component analytically. The
resulting function will have different structures de-
pending on the type of the interpolation scheme used.

Now (12) can be rewritten in the following ap-
proximation form

f (x1, ..., xN) ≈ eϕ0















N
∏

i=1

eϕi(xi)















· · · (17)

(17) is the ultimate multivariate interpolation for-
mula we sought.

4 Concluding Remarks
The main goal of this paper was to construct a multi-
variate approximate interpolation formula to approx-
imate a function from a discrete data. Data was as-
sumed to be given at all nodes of a hyperprismatic
mesh. That is, we have dealt with the uniform data.
We have used HDMR to approximate the logarithm
of the function under consideration instead of itself
since the logarithm converts the multiplicativity to
additivity. The additive nature of HDMR was taken
to scene for this reason. The dominancy in the mul-
tiplicativity enabled us to truncate HDMR at univari-
ate level. All these allowed us to construct (17).

The approach presented here can be extended by
increasing the truncations order to get better results.

If the function under consideration is dominantly
additive then the function’s itself can be expanded
to HDMR and the univariate truncation of the result
gives another multivariate interpolation formula.

All these mean that a lot of fruitful application
possibilities are arising in the horizon for future ap-
plications although (17) seems to be a milestone in
multivariate interpolation of uniform data at the
nodes of a hyperprismatic mesh.
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[6] İ. Yaman and M. Demiralp, High Dimensional
Model Representation Approximation of an Evo-
lution Operator with a First Order Partial Differ-
ential Operator Argument, Applied and Numeri-
cal Analysis and Computational Mathematics,

2003, VOL 1, pp 287-296.
[7] M.A. Tunga and M. Demiralp, A Factorized

High Dimensional Model Representation on the
Partitioned Random Discrete Data, Applied and
Numerical Analysis and Computational Mathe-
matics, 2003, VOL 1, pp 233-243.

[8] M.A. Tunga and M. Demiralp, A factorized high
dimensional model representation on the nodes
of a finite hyperprismatic regular grid, Applied
Mathematics and Computation, 2005, VOL 164,
pp 865-883.

[9] M.A. Tunga and M. Demiralp, Hybrid high di-
mensional model representation (HHDMR) on
the partitioned data, Journal of Computational
and Applied Mathematics, 2006, VOL 185, pp
107-132.

[10] M. Demiralp, High Dimensional Model Repre-
sentation and its application varieties, Tools for
Mathematical Methods, Mathematical Research,
St-Petersburg, 2003, VOL 9, pp 146-159.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp556-559)


