
A Software-based Real-time Video Broadcasting System

MING-CHUN CHENG, SHYAN-MING YUAN
Dept. of Computer & Information Science

National Chiao Tung University
1001 Ta Hsueh Road, Hsinchu, Taiwan 300

TAIWAN, REPUBLIC OF CHINA

Abstract: - There are currently many video broadcasting products and applications, such as projectors, learning
systems, and video streaming systems, but they are either hardware implementations or non real-time
implementations. Additionally, almost all of them do not support a one-to-many model. To solve above
problems, a novel software-based approach capable of rendering full screen 20 frames per second under
800x600x16 resolution to one or two more computers is proposed in this paper. Different methods are
investigated and the most suitable one chosen to achieve this goal. In addition, this system is currently applied
to one-to-many video learning systems.

Key-Words: - video broadcasting, screen capture, screen changes detection, one-to-many multicast

1 Introduction
Video is a good communication tool, and a video
broadcasting system can deliver some screen
contents to some computers to show. It can be
applied to many different fields, such as education,
and entertainment, as well as business. A great deal
of effort has been made today on many video
broadcasting products and applications, such as
projectors, video learning systems, and video
streaming systems. However, they are either
hardware-based implementations [1][2] or non real-
time implementations [3]. The term real-time in this
paper means all screen contents have to be
synchronized and no frame delay occurs. In other
words, buffering technology [12], which is widely
used by streaming system, can not be exploited in
the system. Besides, Users have to buy certain
equipment or spend time preparing for content
before using them. In addition, almost of them
[4][5][6] do not well support a one-to-many model.

Developing a software-based real-time video
broadcasting system faces many problems.
Performance is the main problem, because video
data is too large to process or transmit well.
Designing and implementing a software-based real-
time video broadcasting system capable of rendering
full screen 20 frames per second under 800x600x16
resolution to one or two more computers is the aim
of this paper. Many different methods are analyzed
and the most suitable chosen to achieve this goal.

This paper is organized as follows. Section 2
introduces display system fundamentals and Section
3 explains design and implementation. Section 4

describes applications. Finally, Section 5 presents
the conclusions.

2 Fundamentals of Display System
An inquiry of display system fundamentals must
first be made. The hardware and software display
system architectures are introduced in this section.
Because the current system is designed and
implemented for the Microsoft Windows platform,
the following content focuses on Microsoft
Windows.

PCI BUS 33MHz

Memor y Cont r ol l er

Memor y Cont r ol l er

Di spl ay Memory

Syst em Memory

CPU

GPU

Fig.1. the hardware architecture of the display system

2.1 Hardware Architecture
There are two separate memories in the display
system as Fig.1 shows. One is system memory and
the other is display memory. The data generally
moves between both. Such moves are handled by
the CPU and have to go through the performance-
limiting PCI bus, with a bandwidth of about

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp809-814)

33MBytes/s (33MHz * 8 Bytes). To solve this
problem, AGP was proposed. AGP has more
bandwidth than the PCI bus, and the display system
can move data more efficiently by going through the
AGP. Nevertheless, this hardware acceleration is
only for one direction, from system memory to
display memory. As a result, AGP does not help
screen capture, which has to move data from display
memory to system memory.

2.2 Software Architecture
Fig.2 depicts the display system software
architecture, and this architecture will be explained
by an example. When an application wants to draw
something on the screen, it will call Win32 GDI
functions first, and these Win32 GDI functions will
then call the graphics engine from user mode to
kernel mode. The graphics engine will also mediate
these requests to the corresponding graphics driver,
which is responsible for rendering. Finally, the
graphics driver translates these requests into
commands for the video hardware to draw graphics
on the screen.

Fig.2. the software architecture of the display system

3 Design and Implementation
There are two roles in the system, a sender and one
or two more receivers. The sender is responsible to
capture its screen, encode the captured data, and
send them to receivers. A receiver is responsible to
receive the data from the sender and update its
screen. The details of these actions are illustrated as
Fig.3.

In Fig.3, the left part represents sender and the
right part represents receiver. The arrow indicates
the processing direction. On the sender side, there
are five steps to process from top to bottom, and
each of them will be explained in different sub-
sections. The first step is to detect which areas on
screen had been changed from the last detection,
and the second step is to merge the results of the
first step. The third step is to capture these screen

areas described by the results of the second step.
The fourth step is to compress and encode them into
update commands, and the last step is to send them
out via data channel. Processing from step 1 to step
5 is called a round. Moreover, the system has to
process a round at least every 50 ms to generate 20
frames per second, otherwise users will sense frame
delay. On the receiver side, when receiving update
commands from sender, the first step is to decode
and decompress them, and then update its screen
according to commands received in the first step.

3.1 Screen Changes Detection

data channel

sender

receiver
3.2 Merge

3.3 Screen Capture

3.4 Compression and Encoding

3.5 Send 3.5 Receive

3.4 Decompress and Decoding

Update Screen

Fig.3. the flow chart of processing steps

Because of the real-time characteristic, every

step should be as fast as possible. However, the
fastest algorithm for one of the steps may not be the
most suitable for the overall system. To take a
simple example, in the compression and encoding
step, the faster compression algorithm may have less
compression ratio, causing the next step to spend
more time on sending them. The authors in this
section will discuss many different mechanisms or
algorithms, analyze the trade-off among them, and
choose the most suitable one in a different step.

3.1 Screen Changes Detection
Because of insufficient PCI bus bandwidth,
introduced in section 2.1, detecting screen changes
is an important consideration. The purpose of screen
change detection is to reduce data size in order to
improve system performance. Based on section 2.2,
there are many opportunities to intercept the
drawing requests from application. According to the
parameters of these requests, the system can know
what happens on screen. Table 1 shows four
methods to detect screen changes and the
differences among them. The authors use five
criteria to compare them. The first criterion is to see
whether or not to reboot during first installation. If
rebooting is necessary, it may make for a bad end-
user experience. The second criterion is to judge
development difficulties. More development
difficulties imply more side effects. The third

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp809-814)

criterion is to check whether or not to disable
DirectDraw when activated. If DirectDraw does not
disable, something on the screen may not capture by
these methods. The fourth criterion indicates which
versions of Microsoft Windows are supported. The
last criterion is to see whether or not to reboot when
unloading these hooks or drivers.

Win2000 Windows Windows Win95/98 OS requirement
No Yes Yes Yes Reboot when de-

activated?

Yes No No No Disable DirectDraw
when activated?

Easy Tedious
work

Tedious
work

Easy Difficulties in
implementation

NoYes Yes No Reboot when first
installation?

Mirror
Driver

GDI32
hook

Graphics
Driver hook

DDIhook

Win2000 Windows Windows Win95/98 OS requirement
No Yes Yes Yes Reboot when de-

activated?

Yes No No No Disable DirectDraw
when activated?

Easy Tedious
work

Tedious
work

Easy Difficulties in
implementation

NoYes Yes No Reboot when first
installation?

Mirror
Driver

GDI32
hook

Graphics
Driver hook

DDIhook

Table 1. the characteristics of different screen change detection
mechanisms

 DDI Hook [7]
This method exploits an undocumented API,
SetDDIHook, provided by Microsoft. This API can
intercept all DDI functions, but it only supports
Windows 95/98 and it will consume more CPU
resource than others methods.

 Graphics Driver Hook [7]
This method exploits wrapper technology. It
replaces the original graphics driver, which is a
DLL file, by a wrapper driver, which is a DLL file
also. All DDI calls will first be intercepted by this
wrapper driver and then passed to the original
driver. This method has to implement all DDI calls
that the original DLL supports, and it is a tedious
work.

 GDI32 Hook [7]
This method is almost the same as the graphics
driver hook mentioned above, except it is in user
mode, and this method replaces GDI32 DLL instead
of graphics driver.

 Mirror Driver [7]
Mirror driver is provided by Windows 2000 and
later. A mirror driver is a display driver for a virtual
device that mirrors the drawing operations of one or
more additional physical display devices. After it is
activated, when the system draws to the primary
video device at a location inside the mirrored area, a
copy of the drawing operation is executed on the
mirrored video device in real time. The system can
track the screen update using a copy of the drawing
operations.

After analyzing the above four methods, the authors
choose mirror driver to detect screen changes. In
addition, every screen change detected by the above

mechanisms is described by a rectangular area,
which is denoted by two points, such as (x1, y1, x2,
y2). An example is shown as Fig.4. The outer frame
represents an entire screen, and the shading portion
represents changes in this area.

Screen Changes

(x1, y1)

(x2, y2)

Fig.4. this figure represents an entire screen, and
shading portion represents a screen change.

3.2 Merging
There may be more than 100 screen changes every
50 ms, and each can be represented by a rectangular
area as Fig.4 shows. If capturing each of them
individually, it is too many capture actions to
complete them in time. To reduce the number of
capture actions, the system uses a merging
algorithm to merge related areas into a larger one.
The algorithm is described below.

The simplest merging algorithm is to find the
top-left and bottom-right points among all screen
change areas. Consequently, these two points
represent a larger area covering all previous screen
change areas, and the system can handle it instead of
every individual area. On the other hand, this
algorithm is not concise enough; it may waste time
handling too many un-changed areas as Fig.5
shows. Three screen changes are detected before
merging in Fig.5. After merging, these three areas
are covered by another larger area, which covers,
however, too many un-changed areas.

(a) (b)
Fig.5. (a) before merging; there are three screen changes, and
these changes are denoted by shading color. (b) after merging;
the shading portion represents the merging result

In order to solve this problem, the system first
divides the screen into several rectangular blocks as
Fig.6 demonstrates. Every block uses the same
algorithm presented above, and this step is called
Merging Phase 1. After Merging Phase 1, the

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp809-814)

system will merge areas in neighbour blocks, called
Merging Phase 2. This algorithm is not only more
concise, but also limits the number of change areas
to handle. The upper bound is the half number of
total blocks. An example of this algorithm is
demonstrated as Fig.6.

(a) (b) (c)
Fig.6. (a) Merging Phase 1. (b) Merging Phase 2. (c) After
merging

In Fig.6, after Merging Phase 1, there are four areas
left. Moreover, above three areas are neighbours,
and they will be merged after Merging Phase 2.

3.3 Screen Capture
In order to prevent users from sensing frame delay,
frame rate has to be larger than 20 fps. Thus, the
system has to choose a screen capture mechanism
capable of capturing full screen at least 20 times per
second.

Fig.7 shows the performance of three different
mechanisms to capture screen. This section
describes them individually below.

0

5

10

15

20

25

GDI DirectX FrameBuffer

fp
s

Fig.7. the performance of different screen capture mechanisms

 GDI [8]

This method uses GDI API, BitBlt, to capture
screen. The BitBlt function performs a bit-block
transfer of the color data corresponding to a
rectangle of pixels from the specified source device
context into a destination device context. By this
method, the system can get a desired format of byte
buffer.

 DirectX [8]
DirectX is a set of multimedia APIs that Microsoft
provides. Every DirectX application contains what
we call buffer or surface to hold the video memory
contents related to that application. These buffers
are called the back buffer of the application. There

is also another buffer that every application can
access called front buffer.

The front buffer holds video memory related to
the desktop contents. By accessing the front buffer
from the DirectX application, the screen contents at
that moment can be captured.

 FrameBuffer [7]
A frame buffer is the dedicated memory on a
graphics adapter. It is possible to write a driver to
access FrameBuffer directly. Nevertheless, a
different graphics adapter may have a different
format from FrameBuffer, and direct access
performance is not good, as explained in section 2.1.

After conducting experiments on the above three
methods, the authors choose GDI to capture screen.
In addition, whatever the sender color depth and
format, all captured data are converted into the
R5G6B5 format, and the system leverages MMX
instructions to speed-up transform speed.

3.4 Compression and Encoding
To reduce bandwidth usage, the system compresses
the data before sending. Based on test results from
compression.ca [9], the authors choose a sufficiently
fast and good compression ratio algorithm called
LZOP to compress data.

Top (2)
Width (2)

Left (2)

Height (2)

Encoding (4)

Payload (?)

header

encoding data

Sequence (4)

Fig.8. the encoding format

After compressing, the system has to encapsulate
the compressed data into a specific format, called
update command, and this step is called encoding.
The encoding format is shown as Fig.8.

This encoding format is almost the same as RFB
(Remote Frame Buffer), used by VNC. An RFB
packet can be seen as having two parts, header and
data. The header includes the update command
sequence number, the area position information, and
compressing method used. Moreover, the data part
contains compressed data. When receiving an RFB
packet (update command), the receiver can
decompress the data part using the method the
header part declares, and then copy the
decompressed data into FrameBuffer according to
the area position information.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp809-814)

3.5 Transmission
The system exploits a modified UDP protocol to
send screen update commands from sender to
receivers for two reasons. The first is that the screen
update command is time-critical, and some lost
commands may be out-of-date as well as the system
does not need to re-transmit these lost commands. In
other words, TCP is not suitable for a wireless
environment [10]. The second reason is that TCP is
not suitable for a one-to-many scenario [11]. TCP
needs more bandwidth than UDP when the sender
transmits the same data to two more receivers.

UDP, however, is not good enough for
transmitting screen update commands. To introduce
easily, the screen is divided into only four blocks,
and a block within a shading color indicates that the
block has been changed since the last time. Every
figure has two parts, the upper part represents
sender, and the lower part represents receiver. The
arrows represent screen changes time by time.
Furthermore, α, β, and γ represent update
commands, and alphabets, A, B, C and so on,
represent block show content.

When some of the blocks change in the sender-
side, after processing, the sender will send these
update commands to receivers. When a receiver
receives update commands, it will refresh its screen
according to these commands as soon as possible.

A B
C D

E B
C D

E F
C G

E F
H G

1. send α (E) 3. send β (F,G) 5. send γ (H)

A B
C D

E B
C D

E F
C G

E F
H G

2. recv α 4. recv β 6. recv γ

Sender

Receiver

Fig.9. normal situation

Fig.9 expresses a normal situation (no update
command lost), and the details are explained as
follows:
1. The sender detects an upper-left block change,

the content of which had been changed from A
to E, encodes this information into α, and
sends it out.

2. The receiver receives α, decodes α, and
updates its screen according to α. After
processing, the upper-left block content is
changed from A to E.

3. The sender detects a change in the right two
blocks, encodes this information into β, and
sends it out.

4. The receiver receives β, decodes β, and
updates its screen.

5. The sender detects a change in the lower-left
block, encodes this information into γ, and
sends it out.

6. The receiver receives γ, decodes γ, and updates
its screen.

A B
C D

A B
C D

A F
C G

A F
H G

2. lost α 4. recv β 6. recv γ

A B
C D

E B
C D

E F
C G

E F
H G

1. send α (E) 3. send β (F,G) 5. send γ (H)Sender

Receiver

Fig.10. error situation when using UDP

Fig.10 illustrates an error situation (one command
lost). Because of lost packets, it makes some
receiver screen blocks inconsistent. For example, in
Fig.10, the upper-left block of the last screen in the
receiver should be E, but is A, caused by the loss of
α.

3.1 Screen Changes Detection

data channel (UDP)

sender

receiver
3.2 Merge

3.3 Screen Capture

3.4 Compression and Encoding

3.5 Send 3.5 Receive

3.4 Decompress and Decoding

Update Screen

control channel (TCP)
Fig.11. the revised flow chart of processing steps

To overcome the above problem, the authors
propose a modified UDP, named MDP. The MDP
concept is that a receiver can tell the sender which
update commands the receiver does not receive via
the control channel, which is a TCP connection.
Moreover, the sender can merge the screen area
covered by these lost update commands into the
next update command instead of re-transmitting the
original update command as Fig.11 shows.

To implement MDP, the sender has to record
every update command position, including left, top,
width, and height, and every record expires after 2
seconds. Moreover, every update command from
sender has a unique sequence number to detect lost
commands.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp809-814)

A B
C D

A B
C D

A F
C G

E F
H G

2. lost α 4. recv β 7. recv γ

A B
C D

E B
C D

E F
C G

E F
H G

1. send α (E) 3. send β (F,G) 6. send γ (E,H)

5. tell serverα is lost

Sender

Receiver

Fig.12. error situation when using MDP

Fig.12 is an example explaining MDP. Steps 1, 2, 3,
4 are the same as Fig.10. After receiving β, the
receiver will discover some lost commands by
comparing sequence numbers. Then, the receiver
tells the sender α is lost. When the sender receives
lost information from the receiver, it will query
previous records to see what screen areas these lost
commands cover. Finally, the sender adds this area
into merge phase (section 3.2), and these areas are
considered as changed areas.

4 Applications
There are many commercial products for the video
learning system, but most of them are hardware-
based.

In this application, there are two roles in the
system, teacher (sender) and student (receiver).
When the system is activated, the content of the
students’ screen will be the same as the teacher’s
screen. Thus, this system can be used for teaching,
demo, and so on. The authors apply the proposed
system to a video learning system to reduce cost,
because all necessary equipment is existence in
traditional computer rooms. Fig.13 illustrates the
architecture of the software-based system, and all
equipment is interconnected with a wired network,
for example, 100 Mbps Ethernet.

Teacher

student student

Wired Environment (100Mbps)

student student

Fig.13. the architecture of the video learning system

5 Conclusions
There are many issues which need to be addressed
when designing and implementing a software-based

real-time video broadcasting system. The authors
survey many different methods and mechanisms for
each processing step, in this paper, and explain how
to choose the most suitable ones. A novel
transmission mechanism is additionally proposed in
this paper to support a one-to-many model.
Currently, this system is applied video learning
systems. Reducing bandwidth usage will be the
authors’ future focus.

References:
[1] D-Link DPG-2000W,

http://support.dlink.com/products/view.asp?pro
ductid=DPG%2D2000W

[2] NEC’s Wireless MT1065,
http://www.projectorcentral.com/wireless_nec_
mt1065.htm

[3] The Windows Media Technology Web Page,
http://www.microsoft.com/windows/windowsme
dia.

[4] VNC, http://www.realvnc.com
[5] Ricardo A. Baratto, Jason Nieh, and Leo Kim,

“THINC: A Remote Display Architecture for
Thin-Client Computing”, Technical Report
CUCS-027-04, Department of Computer
Science, Columbia University, July 2004.

[6] S. Jae Yang, Jason Nieh, Matt Selsky, and
Nikhil Tiwari, "The Performance of Remote
Display Mechanism for Thin-Client
Computing", Proc. of the 2002 USENIX Annual
Technical Conference, Monterey, CA, June 10-
15, 2002, pp. 131-146

[7] Microsoft Windows DDK Document
[8] Microsoft MSDN library
[9] Archive Comparison Test,

http://compression.ca/act/act-summary.html
[10] H. Balakrishnan, V. N. Padmanabhan, S.

Seshan, and R. H. Katz, “A Comparison of
Mechanisms for Improving TCP Performance
over Wireless Links”, IEEE/ACM Transactions
on Networks, 1997.

[11] Tsun-Yu Hsiao, Ming-Chun Cheng, Hsin-Ta
Chiao, Shyan-Ming Yuan, “FJM: A High
Performance Java Message Library”, IEEE
International Conference on Cluster
Computing 2003, Hong Kong, Dec 1-4, 2003,
pp.460-463

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp809-814)

