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Abstract: - An advanced robust sliding mode control scheme is proposed for linear systems. First, based on 
LMI technique the positive definite matrix which is key to construct the sliding surface is found , then a global 
integral-type sliding surface is constructed for the systems in the presence of both matched and unmatched 
uncertainties, then the global sliding mode controller is constructed for systems both with matched and 
unmatched uncertainties. In terms of LMIs the sliding surface is easy to design especially for even large-scale 
systems in the computational aspect. Furthermore the controlled system during ideal sliding mode completely 
nullifies matched uncertainties and inherits the same properties as those of the controlled nominal system in the 
absence of uncertainties. In addition, since the reaching phase is eliminated, the controlled system is more 
robust against perturbations than the other variable structure control system with reaching phase. 

Key words � -Sliding model, variable structure system control, LMIs, nominal system, unmatched 
uncertainties. 

 

1 Introduction 
Variable structure system control, as one of the most 
active research areas of control theory and one of the 
powerful practical tools, has been studied for many 
decades[1-9]. Sliding mode controller is constructed 
in order to keep controlled systems to a given 
constraint surface and also make the systems 
insensitive to some certain external and internal 
disturbances. The basic idea of sliding mode control 
is as follows. Choose a sliding surface; then use the 
sliding mode controller to drive the state outside into 
the surface; finally, using equivalent control to 
render the state in the sliding mode along the surface 
to the desired equilibrium.  

Many approaches have been proposed for the 
design of the sliding surface-these include pole 
placement, eigenstructure assignment and optimal 
quadratic methods. More recently linear matrix 
inequality (LMI) methods have been explored[2-9]. 
Choi[2] developed a new design method of linear 
sliding surface which is linear to the state. This 
method has some advantages over traditional design 
methods and offers some additional design 

flexibility. Since LMI problems can be easily 
determined whether they are feasible or not, and if it 
is, they can be solved very efficiently by using 
powerful algorithms. This approach has advantage 
in the computational aspect and therefore sliding 
surface for even large-scale systems can be easily 
computed. Using this method, the emphasis in the 
work of Choi[2,7] and Gouaisbaut[6] has been largely 
the design of sliding surface so that the sliding mode 
is robust to unmatched uncertainty.  In [3,4] Choi 
considered the problem of designing a sliding 
surface for a class of uncertain systems with 
mismatched uncertainties. The mismatched 
uncertainties is the form )(),( tExtxDF , where 

),( txF  is unknown but bounded as 1),( <txF  

for all RRtx n ×∈),( , and D  and E  are known 
matrices of appropriate dimensions. In order to 
improve the robustness of the systems, in this paper 
we design a integral-type surface based on LMI. The 
systems considered in the paper are wider than the 
systems considered in [3,4] and the sliding mode 
controller is global sliding mode controller, therefore 
the reaching intervals is eliminated and the 
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robustness of the closed systems is improved.  
 

2 Problem formulation  
Let the system to be controlled be represented by the 
following differential equation 

]),()()),([()()( txhtutxYIBtAxtx +++=&       
  ),,,( tpxw+                      �1� 

where nRx∈ is a vector of measurable states,          
mRu∈  is a vector of control inputs, and nnRA ×∈  

is the system-characteristics matrix, mnRB ×∈  is 
the input matrix with full rank mBr =)( .   

),( txY  and ),( txh represent the matched 
uncertainties and ),,( tpxw represents the 
unmatched uncertainties, where ,Sp∈  
and mRS ∈  is some prescribed compact set.  

We will assume the following to be valid : 
1) The pair ),( BA  is stabilizable. 
2) The matched uncertainties ),( txY  are 

bounded in Euclidean norm as  
 , 1),( ε−<txY 10 <ε<  

and ),(),( txtxh β≤ �where ),( txβ  is a known 
continuous positive scalar-valued function. There 
exist functions ),( txα  such that  

),(),,( txtpxw α≤ � 

and ),( txα  is a known continuous positive 
scalar-valued function. 

  The systems�1�are more general kind systems 
than those of [3,4]. 

 
 

3 Design of sliding surface 
In order to design the sliding controller of the 
system (1), we first consider the nominal form of 
system (1) as following 

     )()()( tButAxtx +=& ,            �2� 
the following result is very useful. 

Lemma 1[7] If the pair ),( BA  is stabilizable, 
then the following LMIs have a solution matrix X : 

0~)(~,0 <+> BXAAXBX TT . 

Where )(~ mnnRB −×∈ is the orthogonal complement 
of the input matrix B  that is B~  satisfying 

IBBBB TT == ~~,0~
. 

Consider the nominal systems (2), the sliding 
surface, which is linear with respect to the state x  
is given by 

0)( 1
1 ===σ − xXBSxx T .            �3� 

The sliding mode controller is chosen as  
xSSASBtu )()()( 1 Φ−−= − ,            �4� 

where Φ  is chosen negative definite matrix.  
We can establish the following. 
Theorem 1 Consider the nominal systems (2), the 

sliding surface is chosen as (3) and the sliding mode 
controller is chosen as (4), then the closed-loop 
systems restricted to the sliding surface is stable and 
the resulting mn −  reduced-order dynamics is 
given by  

)()]()([)( 1 txSSASBBAtx Φ−−= −& ,    �5� 
or 
   )(~)~~(~~)(~ 1 txBBXBBAXBtxB TTTT −=& .    �5’� 

Proof  Let 112
1)( σσ= TxV �then 

0)(    

)()]()([    

))]()(([

111

1
1

111

<σΦσ=Φσ=

Φ−−σ=

+σ=σσ=
−

TT

T

TT

tSx

txSSASBSBSA

tButAxSV &&

 

so the reachability condition is satisfied. 
Define a transformation matrix as follows 

⎥
⎦

⎤
⎢
⎣

⎡
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⎦
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� 
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Let )()( tMxtz = � then ⎥
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where mmn RtzRtz ∈∈ − )(,)( 21 . system � 2 � is 
transformed into follows  

)()()( 1 tMButzMAMtz += −&            (6) 
Now using (4) in equation (6) gives 

⎥
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⎤
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⎡
⎥
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⎤
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Φ
=

−−
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)(
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&

noted that on the sliding surface 0)( 12 =σ=tz , 
then the system dynamics is governed by equation 

)(~)~~(~~)(~ 1 txBBXBBAXBtxB TTTT −=&  which is 
asymptotically stable.                        

In order to improve the robust quality of the 
closed-loop systems of (1), it is proposed the 
following integral type sliding surface  

ττΦ−−=σ ∫ dSxtSxtSxx
t

t0

)()()()( 0 .    �7� 

Obviously the nice property 0))(( 0 =σ tx  is 
achieved, such that the reaching phase is eliminated. 
Since the sliding mode exists from the very 
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beginning, the system is more robust against 
perturbations than the other sliding mode control 
systems with reaching phase.  

 
  

4�Construction of controllers 
First we consider systems (1) only with matched 
uncertainties. The systems is prescribed as follows 

)],,()()),([()()( txhtutxYIBtAxtx +++=&   (8) 
using the sliding surface�7� and the controller is 
designed as follows 

⎪
⎩

⎪
⎨

⎧

=σΦ−−
≠σσσρ−

Φ−−

=
−

−

      0  if ,)()()(
  0 if , )()(),(

)()()(
)(

1

1

txSSASB
SBSBtx

txSSASB
tu TT  (9)            

Where 
)}.,()()()()1{(),( 11 txtxSSASBtx βεερ +Φ−−> −−

 
Theorem 2 Consider system (8), if the sliding 

surface is chosen as (7) and the sliding mode 
controller is (9), then the closed-loop system is 
asymptotically stable and the closed-loop dynamics 
restricted on the surface is 

).()]()([)( 1 txSSASBBAtx Φ−−= −&        �10� 
Proof Differentiating the sliding surface )(xσ  

with respect to time using (8) and (9) one obtains 

).()(          
),()()),((       

)]()()(          
),()()),([(       
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1
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 �11� 

Let σσ= TxV
2
1)( �then 

)].()()(      
),()()),([(

1 txSSASB
txhtutxYISBV TT

Φ−+

++σ=σσ=
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If 0≠σ , substituting sliding mode controller (9) 
into the previous equation one obtains 
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thus 0=σ , ).,[ 0 +∞∈∀ tt In the sliding mode, 
0=σ& , thus in the sliding mode the controller is 

)]()()(          
),([)],([)(

1

1

txSSASB
txhtxYItu

Φ−−

−+=
−

−

 

                                     �12� 
Substituting (12) into (8) one obtains (10).       

In the sliding mode, the matched uncertainties 
),(),,( txhtxY  are completely nullified. 

Moreover, under the sliding surface (7), the 
closed-loop dynamics of systems (8) in the sliding 
mode mimics the nominal systems (2) under the 
nominal controller (4).  

Now we consider the use of integral type sliding 
surface (7) for a general class of unmatched 
uncertainties systems with form (1). The sliding 
controller is designed as 

⎪
⎩

⎪
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≠σσσρ−
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         ,0 if),()()(
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�13� 
where

].)(),(),(              

)()()()1[(),(
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εερ
 

Theorem 3 Consider system (1), if the sliding 
surface is chosen as (7) and the sliding mode 
controller is (13), then the closed-loop system is 
asymptotically stable and the closed-loop dynamics 
restricted on the surface is 

),,(])([         
)()]()([)(

1

1

tpxwSSBBI
txSSASBBAtx

−

−

−+

Φ−−=&
  

                �14� 
Proof Differentiating the sliding surface )(xσ  with 
respect to time using (1) and (13) one obtains 

).()(),,(            
),()()),((         

)()()(

txSSAtpxSw
txSBhtutxYISB

tSxtxSx

Φ−++
++=

Φ−= &&σ
  

          �15� 

Let σσ= TxV
2
1)( �then  
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If 0≠σ , substituting sliding mode controller (13) 
into the previous equation one obtains 
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In the sliding mode, 0=σ& , thus in the sliding 
mode the controller is 

)],,()()()()(       
),([)],([)(

11

1

tpxSwSBtxSSASB
txhtxYItu

−−

−

−Φ−−

−+=
          

�16� 
submitting (16) into (1) we get (14). 
 
 

5 Conclusions 
In this paper, a global integral-type sliding 

surface is proposed for the system in the presence of 
both matched and unmatched uncertainties. In terms 
of LMIs the sliding surface is easy to design 
especially for even large-scale systems in the 
computational aspect. Furthermore the controlled 
system during ideal sliding mode completely 
nullifies matched uncertainties and inherits the same 
properties as those of the controlled nominal system 
in the absence of uncertainties and the nature and the 
size of the of equivalent unmatched uncertainties.  
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