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Abstract: The effect of limited modal and noise information on the Transformation Matrix Method is presented. 
This method detects structural damage and operates on the global stiffness matrix of a structure to condense on the 
primary degrees of freedom. The method is based on the fact that the transformation matrix for the damaged state 
can be initially estimated from the corresponding to the non damaged state, by using an iterative procedure. 
 
As data, the method is based on the condensed stiffness matrix of the structure that requires modal shapes and 
vibration frequencies identified from acceleration records. Initially, the localization of seismic instruments is 
defined. Afterwards, the acceleration records coming from the instrumented floors of the structure are obtained. 
From these, the dynamic characteristics of the structure are identified to reconstruct the condensed stiffness matrix. 
This matrix corresponds to the damaged state of the structure. 
 
Finally, using the adjusted condensed stiffness matrix with the dynamic characteristics of the structure and the 
analytically computed condensed stiffness matrix, the Transformation Matrix method locates damage in structural 
elements as the percentage of loss of stiffness. 
 
In this paper, the effect of ignoring all modal shapes and vibration frequencies in the damage detection of structures 
is studied. Examples are presented and advantages and disadvantages of the Transformation Matrix Method are 
discussed.  
 
The final objective of this work is to present this new formulation applying it to the study of building structures. 
 
Introduction 
Many of recent human and economic big losses in 
the world, have been caused by earthquakes. During 
history, it has been observed that these losses have 
been caused by a faulty seismic behaviour of 
structures. This behaviour causes partial failures and 
even total collapse of the structures, as well as fires 
or explosions that can increase the losses. 
 
In order to prevent from such disasters, there are 
some methods for damage detection in structures that 
produce satisfactory results (Berman and Nagy, 
1983; Hassiotis and Jeong, 1995; Cobb and Liebst, 
1997; Sohn and Law, 1997; etc). These are necessary 
for different load conditions of the buildings, such as 
earthquakes, over load, wind, machinery induced 
vibrations, corrosion, thermal effects, etc. 
 
In addition, in spite that current construction codes 
are improved every year, engineers are aware of 

catastrophic losses that could be caused by severe 
earthquakes, even in those countries in which studies 
on seismic engineering are a high-priority research 
activity. 
 
In this paper, the effect of limited modal information 
on structural damage detection based on the 
Transformation Matrix method that operates on the 
global stiffness matrix is studied. The method is 
based on the condensed stiffness matrix of the 
structure which requires modal shapes and vibration 
frequencies, identified from acceleration records 
which are recorded at seismic instruments located on 
the structure. From these, the dynamic characteristics 
of the structure are identified, and consequently the 
condensed stiffness matrix is derived. This matrix 
corresponds to the damaged state of the structure. 
Finally, using the condensed stiffness matrix adjusted 
with the dynamic characteristics of the structure and 
the condensed stiffness matrix analytically computed, 
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the Transformation Matrix method locates damage in 
the structural elements as the percentage of the loss 
of stiffness. 
 
In this paper, the effect of ignoring all modal shapes 
and vibration frequencies in the detection of damage 
of structures is studied. Examples are presented and 
the advantages and disadvantages of the 
Transformation Matrix method are discussed.  
 
 
The Transformation Matrix Method 
When a structure is subjected to seismic 
accelerations, measurement of its effects provides 
useful information to study and to evaluate its 
dynamic response as well as the historical evolution 
of its behaviour. When a structure is instrumented it 
is possible to get its modal shapes and vibration 
frequencies that can be used to estimate its damage 
state. 
 
The damage detection method presented in this paper 
is known as the Transformation Matrix method, 
TMM, because it is based on the transformation 
matrix that operates on the global stiffness matrix to 
condense the primary degrees of freedom (Sosa et al., 
1998; Escobar, et al., 2001, 2004, 2005). This 
reduction is carried out based on modal shapes and 
vibration frequencies identified from seismic records. 
 
 
Damage detection in plane frames 
The global stiffness matrix of a plane frame for a 
damaged state [Kd], can be written as: 
 

[ ] [ ] [ ]i
nej

i
iwdd KdkKK ∑−=

=1
        (1) 

 
where [Kwd] is the stiffness matrix of the structure 
without damage; nej, is the number of elements of the 
frame; dki is a nondimensional parameter that 
represents the degradation of stiffness of the i-th 
element (0 <dki <1); [K]j is the stiffness matrix 
without damage of the element i of the frame. The 
lateral stiffness matrix [ ]dK  corresponding to a state 
of damage of the frame is calculated as: 
 

[ ] [ ] [ ]i
nej

i
iwdd KdkKK ∑−=

=1
        (2) 

where [ ] [ ] [ ][ ]dd
T

dd TKTK = ; [Td] is the 

transformation matrix, and a function of the partition 
performed in the global stiffness matrix among 
primary and secondary degrees of freedom; 
[ ]wdK = [ ] [ ][ ]wdwd

T
wd TKT  and 

[ ]iK = [ ] [ ][ ]wd
T

wd TKT . Sub indexes d and wd 

correspond to the damaged and non damaged state, 
respectively. 
 
In order to calculate the lateral stiffness matrix of the 
structure in equation (2), as a first approach, it can be 
assumed that the transformation matrix for the 
damaged state [Td], does not differ from the one 
corresponding to the non-damaged state [Twd]. In this 
way, an iterative procedure allows to detect the 
damaged elements by successive approaches 
(Escobar, et al., 2001, 2004, 2005). 
 
The lateral stiffness matrix of the damaged structure 
is of order mxm, and due to its symmetry, it has 
nti=m(m+1)/2 independent terms. Developing 
equation (2) for each one of the terms of each matrix, 
it is obtained: 
 

{ } { } [ ]{ }dkSkk kdwd =−                     (3) 
 
where { }wdk , { }dk , and { }dk are vectors of order ntix1 
that contain: the independent terms of the matrix of 
lateral stiffness without damage, the independent 
terms of the damaged lateral stiffness matrix, and the 
stiffness degradation of the structural elements, 
respectively; and [Sk] is a matrix of order ntixnej that 
contains the terms ijk . 
 
Because in general, the number of equations nti is 
different from the number of unknowns nej, the 
previous system of equations is non-consistent. A 
vector that provides an exact solution for the terms of 
the left side of equation (3) does not probably exist; 
in other words, it is probable that vector { }wdk - { }dk  
it is not a linear combination of the columns of [Sk]. 
 
 
Damage detection in three-dimensional 
structures 
The global stiffness matrix corresponding to a 
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damage state in frame j of a structure is: 
 

[ ] [ ] [ ]ij
nej

i
ijjwdjd KdkKK ∑

=

−=
1

        (4) 

 
where dkij is the stiffness degradation of the element i 
of frame j. In this case, the condensed stiffness 
matrix of the three-dimensional structure 
corresponding to a damage state is obtained as: 
 

[ ] [ ] [ ]rd

Nr

r
rwdd KdkKtKt ∑

=

−=
1

     (5) 

where: 

[ ] [ ] [ ] [ ][ ] [ ]∑
=

=
Nm

j
jjdwd

T
jd

T
jwd CTKTCKt

1
 

[ ] [ ] [ ] [ ] [ ] [ ]∑
∈
=

=
Nm

jr
j

jjdrj
T
jd

T
jrd CTKTCK

1

 

 
In the previous equations, Nr is the number of 
elements in the structure; Nm is the number of frames; 
and [C]j is the transformation matrix of 
displacements. This matrix defines a relationship 
between the lateral degrees of freedom of the frame j 
with the primary degrees of freedom of the three-
dimensional structure. From equation (5) it is 
possible to establish a system of linear equations 
when developing an equation for each matrix term 
different from zero. This is: 
 

{ } { } [ ]{ }dkSktkt kdwd =−                  (6) 
 
where [Sk] is a matrix formed by the drk  terms. 
Because the displacement transformation matrices 
are independent of the state of damage of a frame, the 
procedure to solve the equation (6) is similar to the 
one used for plane frames. As an initial approach for 
the solution, it is considered that the transformation 
matrices correspond to the non-damaged state. 
 
 
Algorithm 
The TMM can be summarized as the next iterative 
procedure: 
 
1. For the non-damaged state, matrices [K]i, [Kwd] and 
[T], are computed 

2. Transformed matrices [ ] [ ] [ ][ ]TKTK wd
T=  and 

[ ] [ ] [ ] [ ]TKTK i
T

i = , are computed. 

3. Vector { }wdk  and matrix [ ]kS  of independent 
terms are formed. 
4. Solve the system of equations 
{ } { } [ ]{ }dkSkk kknowndwd =−  for {dk}. 
5. For the obtained damage vector {dk}, the new 
global stiffness matrix [Kd] and its corresponding 
new transformation matrix [T] are computed. 
6. Matrix [Kd] is condensed and a vector { }dk approx of 
independent terms is formed. 
7. If the difference between { }dk known and { }dk approx 
is less than a tolerance value, the process is halted; if 
not, process returns to step 3. 
 
In order to finish the process it is necessary to define 
a criterion to measure the refinement reached by the 
solution after each iteration. Initially, if there is no 
damage in the structure (step 1 of the algorithm), the 
iterative procedure may converge to the damage state 
defined by the vector { }dk known. This can be achieved 
if the transformation matrix used in step 3 of the n+1 
iteration is computed for a fraction of the sum of the 
damage states obtained in previous iterations n and n-
1, for example: 
 

dkn+1= β dkn+ (1-β) dkn+1                (7) 
 

Through an equivalent steepest-descent method, in 
each iteration the proposed algorithm finds an 
optimal value of β (from the values proposed by the 
user). In this way, the transformation matrix shows a 
gradual change that allows the detection of the 
damaged elements by successive approximations. In 
order to measure the approximation of the solution in 
each iteration, the following equation is used 
 

           { } { } 2
approxdknownd kkmine −=       (8) 

 
Another way to finish the process is to establish a 
tolerance for the maximum value obtained when 
comparing the terms of the vectors in step 7. In 
structures with few structural elements, it is possible 
in the first iteration to find and quantify the damaged 
elements. Additionally, since a structural element can 
present only a damaged or non-damaged state, it is 
possible to improve the straight solution of the 
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system of equations of step 4 assigning zero damage 
to the elements with a value of stiffness degradation 
smaller than a specific value. This criterion improves 
the location of the damaged elements using the TMM 
proposed. In order to reconstruct the lateral stiffness 
matrix, corresponding to the damaged state of the 
structure, modal parameters are needed. This 
procedure is described as follows and is named 
adjustment of the stiffness matrix. 
 
 
Adjustment of the stiffness matrix 
With the values of the known modal shapes and 
vibration frequencies, the stiffness matrix of the 
frame was fitted by using the Baruch and Bar-Itzhack 
algorithm (Baruch and Bar-Itzhack, 1978), this is 
 

[ ] [ ] [ ][ ]( )[ ] [ ][ ][ ] [ ] [ ]MXXMHZMKK T
d

2Ω+−=  
(9) 

 

Where [ ] [ ] [ ] [ ][ ]( ) 2
1−

= φφφ MX T ; [ ] [ ] [ ]YIH −= ; 

[ ] [ ][ ] [ ]MXXY T= ; [ ] [ ][ ] [ ]KXXZ T= ; [ ]φ  is a 
known modal matrix; [I] is the identity matrix; and 
[Ω] is a diagonal matrix containing the square of 
known natural frequencies. 
 
To evaluate the effects of limited modal information 
on the TMM, it was applied to the STC building 
(figure 1), studied for Ávila and Meli (1987). The 
lateral stiffness matrix of the damaged structure was 
computed using Baruch and Bar-Itzhack algorithm 
(equation 9). Table 1 shows the results of relative 
error values, in percentage, of the diagonal terms of 
the simulated lateral stiffness matrix of the damaged 
structure computed with equation (9) with respect to 
the number of modes used, for damage cases A, B 
and C. 
 
In Table 1, it can be observed that, in order to obtain 
relative error values (lower than 10%), six mode 
shapes must be utilized to reconstruct the condensed 
stiffness matrix.  
 
For damage cases A and B at least eight modes were 
needed to get relative error values smaller than 2%, 
and for damage case C all modes were required. On 
the other hand, for damage case A, when the first 
three vibration modes of the STC building were 
utilized in equation (9), relative error values for all 

diagonal terms were smaller than 10%, except for the 
one corresponding to the damaged storey. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

             a) head frames                     b) structural elements 
 

Fig. 1, The STC Building studied (Ávila and Meli, 
1987). 

 
 

Table 1, Relative error values (in percentage of the 
total number of modes), of the terms of the 

condensed stiffness matrix of the damaged structure 
computed with equation (9) using different number 

of modes. 
Case A Case B Case C 

Term Modes 
 1 to 3 

Modes 
 1 to 6 

Modes 
 1 to 3 

Modes 
 1 to 6 

Modes 
 1 to 3 

Modes 
 1 to 6 

K1,1 14.2 6.1 0.0 0.2 0.0 0.4 
K2,2 2.9 5.6 0.0 0.0 0.1 0.5 
K3,3 0.2 0.6 0.0 0.2 3.3 5.6 
K4,4 0.1 0.3 0.0 0.0 14.2 9.4 
K5,5 0.0 0.1 0.0 0.4 15.2 8.0 
K6,6 0.0 0.1 0.1 0.1 3.7 4.9 
K7,7 0.0 0.2 0.2 1.6 0.1 1.2 
K8,8 0.0 0.0 3.3 5.6 0.1 0.0 
K9,9 0.0 0.2 14.5 4.7 0.0 0.3 

K10,10 0.1 0.1 12.0 1.4 0.1 0.2 
 
In order to generalize results and evaluate the effects 
on the TMM, several studies for different structures 
considering limited modal information effects are 
needed. It is important to mention that these effects 
are independent of the precision of the proposed 
method. 
 
 
Noise effects 
The noise in the measurement of the dynamic 
characteristics in the evaluation of a state of damage 

Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, April 16-18, 2006 (pp68-73)



of a building complicates damage detection. In this 
paper, the noise effects were considered through the 
modal shapes obtained for a state of simulated 
damage perturbed with different levels of noise;  
Sohn and Law (1997). Thus, for a modal shapeφ ,the 
perturbed modal form φ̂ is built as: 
 

⎟
⎠
⎞

⎜
⎝
⎛ += RNˆ

100
1φφ                       (10) 

 
where N is the level of noise in percentage; R is a 
random number with normal probability distribution 
function, with zero mean, and variance one. 
Noise effects of the measurements uncertainties on 
the STC building model were simulated for damage 
cases A, B and C. In Table 2, results of these damage 
cases utilizing a 3% of noise level are presented. It is 
shown that the TMM method identified all the 
damaged elements with relative error values lower 
than 15%. On the other hand, the relative error values 
of the simulated damage, with respect to the 
calculated one, are greater for beams than for 
columns for damage case A. 
 

Table 2, Damage (in percentage) and relative error 
applying the TMM to the STC building with equation 

(3) of noise level. 
Damage 

case 
Damage 
element 

Simulated 
damage 

(%) 

Computed 
damage 

(%) 

Relative 
error 
(%) 

A 1, 5 
7 

8, 9 
22 
23 
24 
36 

(37, 38, 
39, 40) 

55 
56, 57 

58 

30 
20 
20 
10 
10 
10 
20 
 

20 
25 
25 
25 

31.4 
18.4 
18.4 
8.8 
8.8 
8.8 
19.7 

 
19.7 
21.5 
21.5 
21.5 

4.7 
-8 
-8 
-12 
-12 
-12 
-1.5 

 
-1.5 
-14 
-14 
-14 

B 1, 5 
2, 3, 4 
51, 53 
52, 54 

20 
20 
40 
40 

19.8 
19.8 
41.6 
41.6 

-0.9 
-0.9 

4 
4 

C (46, 47, 
48, 49, 

50) 
(87, 88, 
89, 90) 

 
 

20 
 

40 

 
 

19.4 
 

42.9 

 
 

-3 
 

7.3 

 
 
Limited modal information and noise 
effects 
In order to evaluate the damage detection method in a 
more realistic way, both, noise and limited modal 
information effects were considered to assess damage 
in the STC Building model. 
 
The noise level used in equation (10) was 3%, and 
the number of modes utilized to reconstruct the 
condensed damaged matrix of the building, applying 
equation (9), varied from 1 to 10. When all modes 
were used relative error values are smaller than 5%, 
and smaller than 10% when only the first three 
modes were utilized. The latter is an advantage 
because it is common in practice that only a few of 
the first vibration modes can be identified 
experimentally. As expected, when all possible 
modes were utilized relative error values were 
smaller. 
 
 
Conclusions 
The Transformation Matrix Method, TMM, for 
damage location and assessment was presented. The 
method is based on the fact that the transformation 
matrix for the damaged state of the structure can be 
initially estimated from the corresponding to the non 
damaged state, by using an iterative procedure. 
Particularly, the effect of limited modal and noise  
information on structural damage detection was 
studied. 
 
The TMM always locates damaged structural 
elements. When all the modal parameters are used 
and no noise is present, the TMM produces high 
precision to assess damage. 
 
It was shown that in order to better identify the lateral 
stiffness matrix of the structure, an increase in the  
the number of modes improves damage 
identification. 
 
When the noise effects are considered, the TMM 
method identified structural damage with relative 
error values smaller than 15%. 
 
On the other hand, when noise effects and complete 
modal information were considered simultaneously, 
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the TMM located correctly damaged structural 
elements. In these cases, the maximum relative error 
values obtained was 5%. 
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