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Abstract: - This paper presents a method for unsupervised partitioning of data for finding spatio-temporal 
patterns in climate data using kernel methods which offer strength to deal with complex data non-linearly 
separable in input space. Kernel methods implicitly perform a non-linear mapping of the input data into a high 
dimensional feature space by replacing the inner products with an appropriate positive definite function. In this 
paper we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering 
climate data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial 
data, for effective and efficient data analysis. 
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1   Introduction  
Data clustering, a class of unsupervised learning 
algorithms, is an important and applications-oriented 
branch of machine learning. Its goal is to estimate 
the structure or density of a set of data without a 
training signal. There are many approaches to data 
clustering that vary in their complexity and 
effectiveness, due to the wide number of 
applications that these algorithms have. While there 
has been a large amount of research into the task of 
clustering, currently popular clustering methods 
often fail to find high-quality clusters.  

A number of kernel-based learning methods have 
been proposed in recent years [3, 7, 8, 9, 15, 20]. 
Generally speaking, a kernel function implicitly 
defines a non-linear transformation that maps the 
data from their original space to a high dimensional 
space where the data are expected to be more 
separable. Consequently, the kernel methods may 
achieve better performance by working in the new 
space. While powerful kernel methods have been 
proposed for supervised classification and regression 
problems, the development of effective kernel 
method for clustering, aside from a few tentative 
solutions [4, 9, 16], needs further investigation.  

Finding good quality clusters in spatial data (e.g, 
temperature, precipitation, pressure, etc) is more 
challenging because of its peculiar characteristics 
such as auto-correlation, non-linear separability, 
outliers, noise, high-dimensionality, and when the 
data has clusters of widely differing shapes and sizes 
[11, 17, 21]. With this in view, the intention of this 

paper is, firstly, to analyze selective kernel-based 
clustering techniques in order to identify how 
further improvement can be made especially for 
spatial data clustering. Finally, we present a 
weighted kernel k-means clustering algorithm 
incorporating spatial constraints bearing spatial 
neighborhood information in order to handle spatial 
auto-correlation and noise in the spatial data.  
 
 
2   Kernel-based methods 
The kernel methods are among the most researched 
subjects within machine-learning community in 
recent years and have been widely applied to pattern 
recognition and function approximation [2, 5, 6, 14, 
16, 19]. The fundamental idea of the kernel methods 
is to first transform the original low-dimensional 
inner-product input space into a higher dimensional 
feature space through some nonlinear mapping 
where complex nonlinear problems in the original 
low-dimensional space can more likely be linearly 
treated and solved in the transformed space 
according to the well-known Cover’s theorem.  

 
2.1  Support vector machines and kernel-
based methods 
Support vector machines (SVM), having its roots in 
machine learning theory, utilize optimization tools 
that seek to identify a linear optimal separating 
hyperplane to discriminate any two classes of 
interest [18, 19]. When the classes are linearly 
separable, the linear SVM performs adequately. 
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There are instances where a linear hyperplane 
cannot separate classes without misclassification, an 
instance relevant to our problem domain. However, 
those classes can be separated by a nonlinear 
separating hyperplane. In this case, data may be 
mapped to a higher dimensional space with a 
nonlinear transformation function. In the higher 
dimensional space, data are spread out, and a linear 
separating hyperplane may be found. This concept is 
based on Cover’s theorem on the separability of 
patterns. Figure 1 illustrates that two classes in the 
input space may not be separated by a linear 
separating hyperplane, a common property of spatial 
data, e.g. rainfall patterns in a green mountain area 
might not be linearly separable from those in the 
surrounding plain area. However, when the two 
classes are mapped by a nonlinear transformation 
function, a linear separating hyperplane can be 
found in the higher dimensional feature space.  

Let a nonlinear transformation function φ maps 
the data into a higher dimensional space. Suppose 
there exists a function K, called a kernel function, 
such that, 

)()(),( jiji xxxxK φφ ⋅=  
A kernel function is substituted for the dot product 
of the transformed vectors, and the explicit form of 
the transformation function φ is not necessarily 
known. In this way, kernels allow large non-linear 
feature spaces to be explored while avoiding curse 
of dimensionality. Further, the use of the kernel 
function is less computationally intensive. The 
formulation of the kernel function from the dot 
product is a special case of Mercer’s theorem [15]. 

Examples of some well-known kernel functions 
are given below in table 1. 
 

 
Fig. 1. Mapping nonlinear data to a higher dimensional 
feature space where a linear separating hyperplane can be 
found, eg, via the nonlinear map  
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TABLE 1. Some well-known kernel functions 

Polynomial d
jiji xxxxK >=< ,),(  d is a positive 

integer 

Radial Basis 
Function (RBF) )2/exp(),( 22

σjiji xxxxK −−=  
σ is a user 
defined value 

Sigmoid ),(tanh),( βα +><= jiji xxxxK  α, β are user 
defined values 

3   K-means and kernel meth

Clustering has received a significant amount of 

.1   K-means 
eans [12] which is a 

ods for 
clustering 

renewed attention with the advent of nonlinear 
clustering methods based on kernels as it provides a 
common means of identifying structure in complex 
data [2, 4, 9]. Before discussing two kernel-based 
algorithms [2, 4] here, the popular k-means 
algorithm is described in the next subsection, which 
is used as predominant strategy for final partitioning 
of the data. 
 
3
First we briefly review k-m
classical algorithm for clustering. We first fix the 
notation: let X = { xi }i=1, . . .,n be a data set with xi ∈ 
RN . We call codebook the set W = { wj }j=1, ., ., .,k 
with wj ∈ RN  and k << n. The Voronoi set (Vj ) of 
the codevector wj is the set of all vectors in X for 
which wj  is the nearest vector, i.e. 

}min{ iij xargjXxV =∈=
,...,1 jkj

w−
=

 

For a fixed training set X the quantization error  
E(W ) associated to the Voronoi tessellation induced 
by the codebook W can be written as: 

2

)( ∑ ∑ −=
k

wxWE  
1= ∈j Vx

ji
ji

(1)

K-means is an iterative method for minimizing 
the quantization error E(W) by repeatedly moving 
all codevectors to the arithmetic mean of their 
Voronoi sets. In the case of finite data set X and 
Euclidean distance, the centroid condition reduces to 

∑= ij xw 1  (2)
∈ ji VxjV

where |Vj| denotes the cardinality of Vj . Therefore, 

ack 

• 

.2
g (SVC) [2], also called one-

Input space Feature space 

k-means is guaranteed to find a local minimum for 
the quantization error. However, the k-means does 
not have mechanism to deal with issues such as: 

• Outliers; one of the drawbacks of k-means is l
of robustness with respect to outliers, this 
problem can be easily observed by looking at the 
effect of outliers in the computation of the mean 
in eq. (2).  
non-linear separability of data in input space,  

• auto-correlation in spatial data,  
 data. • noise, and high dimensionality of

 
   One class SVM 3

Support vector clusterin
class SVM, is an unsupervised kernel method based 
on support vector description of a data set consisting 
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of positive examples only. In SVC, data points are 
mapped from data space to a high dimensional 
feature space using a Gaussian kernel. In feature 
space, SVC computes the smallest sphere that 
encloses the image of the input data. This sphere is 
mapped back to data space, where it forms a set of 
contours, which enclose the data points. These 
contours are interpreted as cluster boundaries.  

The clustering level can be controlled by changes 
in 

 an 
inf

lem with the algorithm is its extreme 
s 

• m is its 

ncy 

• ases, the 

ttributes, it 

 
.3   Mercer kernel k-means 

on extending 

 is not 

 
s are 

• 

o 

• erheads, the 

• no mechanism for handling 

 

   Weighted kernel k-means with 

As we have illustrated above, there exist some 

eans clustering algorithm can be 
enh

the width parameter of the Gaussian kernel (σ). 
The SVC algorithm can also deal with outliers by 
employing a soft margin constant that allows the 
sphere in feature space not to enclose all points. 

Since SVC is using a transformation to
inite dimension space, it can handle clusters of 

practically any shape, form or location in space. 
This is probably its most important advantage. 
However, the algorithm has the following 
drawbacks: 

• One prob
dependence on σ. Finding the right value of σ i
time-consuming and very delicate.  
Another disadvantage of the algorith
complexity. The separation of the sphere to 
different clusters and determining the adjace
matrix is extremely complicated.  
As the number of dimensions incre
running time of the algorithm grows 
dramatically. For a large number of a
is practically not feasible to use this algorithm. 

3
In [4], F. Camastra and A. Verri report 
the SVC algorithm. The kernel k-means algorithm 
[4] uses k-means like strategy in the feature space 
using one class support vector machine. The 
algorithm can find more than one clusters. Although 
the algorithm [4] gives nice results and can handle 
outliers but it has some drawbacks:  
• The convergence of this procedure

guaranteed and is an open problem. The 
algorithm does not aim at minimizing the
quantization error because the Voronoi set
not based on the computation of the centroids. 
The algorithm requires the solution of a quite 
number of quadratic programming problems, s
takes heavy computation time.  
Because of the computational ov
algorithm might become unstable for high-
dimensional data. 
Moreover, there is 
spatial auto-correlation in the data. 

 

4
spatial constraints 

problems in the k-means method, especially for 
handling spatial and complex data. Among these, the 
important issues/problems that need to be addressed 
are: i) non-linear separability of data in input space, 
ii) outliers and noise, iii) auto-correlation in spatial 
data, iv) high dimensionality of data. Although 
kernel methods offer power to deal with non-linearly 
separable and high-dimensional data but the current 
methods have some drawbacks as identified in 
section 3. Both [2, 4] are computationally very 
intensive, unable to handle large datasets and 
autocorrelation in the spatial data. The method 
proposed in [2] is not feasible to handle high 
dimensional data due to computational overheads, 
whereas the convergence of [4] is an open problem. 
With regard to addressing these problems, we 
propose an algorithm—weighted kernel k-means 
with spatial constraints, in order to handle spatial 
autocorrelation, noise and outliers present in the 
spatial data. 

The k-m
anced by the use of a kernel function; by using 

an appropriate nonlinear mapping from the original 
(input) space to a higher dimensional feature space, 
one can extract clusters that are non-linearly 
separable in input space. Usually the extension from 
k-means to kernel k-means is realised by expressing 
the distance in the form of kernel function [15]. The 
kernel k-means algorithm can be generalized by 
introducing a weight for each point x, denoted by 
u(x) [7]. This generalization would be powerful for 
making the algorithm more robust to noise and 
useful for handling auto-correlation in the spatial 
data. Using the non-linear function φ, the objective 
function of weighted kernel k-means can be defined 
as: 

2

1
)()()( ∑ ∑

= ∈

−=
k

j Vx
jii

ji

wxxuWE φ  (3)

where, 
∑

∑

∈

∈=

jj

jj

Vx
j

Vx
jj

j xu

xxu
w

)(

)()( φ
 (4)

The Euclidean distance from )(xφ  to center is 
in

jw  
given by (all computations in the form of ner 
products can be replaced by entries of the kernel 
matrix) the following eq.  

2

,

2
)()( ∑∑ jj xxu φ

))((

),()()(

)(

),()(
2),(

)(
)(

∑
∑

∑∑
∈

∈

∈

∈

∈

∈ +−=−

jj

jlj

jj

jj

jj

jj

Vx
j

Vxx
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Vx
j

Vx
jij

ii

Vx
j

Vx

i xu

xxKxuxu

xu

xxKxu
xxK

xu
xφ

(5)
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In the above expression, the last term is needed to be 
calculated once per each iteration of the algorithm, 
and is representative of cluster centroids. If we write 

2

,
),()()(∑

∈ jlj Vxx
ljlj xxKxuxu

 (6)
))(( ∑

∈

=

jj Vx
j

k xu
C

With this substitution, eq (5) can be re-written as 

k

Vx
j

Vx
jij

Vx
jj xxKxuxxu

jjjj

∑∑
∈∈

),()()()(
2

φ

ii

Vx
j

i C
xu

xxK
xu

x

jjjj

+−=−
∑∑
∈∈

)(
2),(

)(
)(φ (7)

For increasing the robustness of fuzzy c-means to 
noise, an approach is proposed in [1]. Here we 
propose a modification to the weighted kernel k-
means to increase the robustness to noise and to 
account for spatial autocorrelation in the spatial 
data. It can be achieved by a modification to eq. (3) 
by introducing a penalty term containing spatial 
neighborhood information. This penalty term acts as 
a regularizer and biases the solution toward 
piecewise-homogeneous labeling. Such 
regularization is also helpful in finding clusters in 
the data corrupted by noise. The objective function 
(3) can, thus, be written as: 

∑∑ ∑∑∑
= ∈

+−=
k

R

k

j Vx
jii

ji
N

wxxuWE
2

1

2
)()()( γφ  

= ∈ ∈

−
j Vx Nr

jri
ji k

wxxu
1

)()( φ (8)

where Nk stands for the set of neighbors that ex tis  in 
a window around xi and NR is the cardinality of Nk . 
The parameter γ  controls the effect of the penalty 
term. The relative importance of the regularizing 
term is inversely proportional to the accuracy of 
clustering results. 

For kernel functions, the following can be written 

),(),(2),()(
2

jjjiiiji wwKwxKxxKwx +−=−φ  

If we adopt the Gaussian radial basis function 
(RBF), then K(x, x) = 1, so eq. (8) can be simplified 
as 

∑ ∑ ∑∑ ∑
= ∈ ∈= ∈

−+−=
kk

WE( γ
j Vx

jr
Nr

i
Rj Vx

jii
ji kji

wxKxu
N

wxKxu
11

)),(1()()),(1)((2)

(9)

The distance in the last term of eq. (8), can be 
calculated as 

2

,

2
),()()(),()()()(

)(
∑∑∑

∈
− jj Vx

j xxKxuxuxxKxuxxu
x

φ

φ
))(()(

21
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∈
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jlj
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j

Vxx
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Vx
j

Vx
jrj

Vx
j

j

r xuxuxu

(10)

As first term of the above equation does not p
any role for finding minimum distance, so it can be 
omitted, however.  

lay 

krk

Vx
j

Vx
jrj
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j
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For RBF, eq. (5) can be re-written as 

k

Vx
jj

i xuxu
x jjjj −=−
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(12)

As first term of the above equation does not 
any role for finding minimum distance, so it can
omitted.  

rom eq. (8) after incorporating the penalty 
ter

play 
 be 

We have to calculate the distance from each 
point to every cluster representative. This can be 
obtained f

m containing spatial neighborhood information 
by using eq. (11) and (12). Hence, the effective 
minimum distance can be calculated using the 
expression: 

)(
(

),()(
2 krk

Vx
jij

CC
u

xxKxu
jj +++− ∑∑ ) NrR

Vx
j Nx

k

jj

∑

∈

Now, the algorithm, weighted kernel k-means 
with spatial constraints, can be written as follows
 
Alg

s) 

∈

∈
βγ  (13)

 . 

orithm SWK-means: spatial weighted kernel k-
means (weighted kernel k-means with spatial constraint

SWK_means (K, k, u, N, γ , ε) 
Input: K: kernel matrix, k: number of clusters, u: weights 
for each point, set ε > 0 to a very small value for 
termination, N: informat on abi out the set of neighbors 
around a point, γ : penalty term parameter,  
Output: w1, ...,wk: partitioning of the points 

1.   Initialize the k clusters: w1=0, ..... , wk =0 

2.   Set i = 0. 

3.   For each cluster, compute C(k) using expression (6) 

oint x, find its new cluster index as 4.   For each p
2

)()( jj wxminargxj −= φ  using expression (13), 

5.   Compute the updated clusters as 
)1( +i

jw  = {x : j(x)=j} 

g termination 
criter

6.   Repeat steps 3-4 until the followin
ion is met: 

ε<− oldnew WW  

 where, { 1wW     11 kwww },....,,,=  are the vectors of 
cluster centroids. 
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4.1   Handling outliers 
This section briefly discusses about spatial outliers, 

e., observations which appear to be inconsistent 
ith their neighborhoods. Detecting spatial outliers 

lications of geographic 

 and 

s consists of time 
series from various points on the land (rainfall 

poral 
ata. If we apply 

 values for 5 years, we get a data matrix of 
24

ations we may get data matrices of 48×60, 
72

ation [22]. It enables us to identify 
reg

i.
w
is useful in many app
information systems and spatial databases, including 
transportation, ecology, public safety, public health, 
climatology, location-based services, and severe 
weather prediction. Informally, a spatial outlier is a 
local instability (in values of non-spatial attributes) 
or a spatially referenced object whose non-spatial 
attributes are extreme relative to its neighbors, even 
though the attributes may not be significantly 
different from the entire population.  

We can examine how eq. (13) makes the 
algorithm robust to outliers. As ),( ji xxK  measures 
the similarity between ji xx and , and when xi is an 
outlier, i.e., xi is far from the other data points, 
then ),( ji xxK  will be very small. So, the second term 
in the above expression will get very low value or, 
in other words, the weighted sum of data points will 
be suppressed. The total expression will get higher 
value hence results in robustness by not 
assigning the point to the cluster. 

 
 

5   Experimental Results 
Given a data matrix, whose row

stations), the objective is to discover tem
and/or spatial patterns in the d
clustering algorithm to the rainfall time series 
associated with points on the land (surroundings of 
rainfall stations), we obtain clusters that represent 
land regions with relatively homogeneous 
behaviour. The centroids of these clusters are time 
series that summarize the bahaviour of those land 
areas. 

For experimentation we selected 24 rainfall 
stations. A 12-month moving average is used for 
removing seasonality from the data. For monthly 
rainfall

×60. SWK-means partitioned it into 2 clusters. 
We also applied the algorithm to the monthly 
average rainfall values of this period, for easy 
visualization of results. Its results are shown in 
Figure 2. As the locations of rainfall stations are 
known, the clustering results can be easily mapped 
on the physical locations on the map. Actually the 
clusters will summarize the time series associated 
with relevant regions, and when results are plotted 
for a longer period, it will form some contiguous 
regions. 

Since the kernel matrix is symmetric, we only 
keep its upper triangular matrix in the memory. For 
the next five year periods of time for the selected 24 
rainfall st

×60 and so on. The algorithm proportionally 
partitioned the data into two clusters. The 
corresponding results are shown in table 2 (a record 
represents 5-year monthly rainfall values taken at a 
station). It validates proper working of the 
algorithm. 

We use the clustering algorithm as a part of a 
software system for analyzing the impact of various 
hydrological and meteorological variables on the oil 
palm plant

ions of the land whose constituent points have 
similar short-term and long-term characteristics. 
Given relatively uniform clusters we can then 
identify how various parameters, such as 
precipitation, temperature etc, influence the climate 
and oil-palm produce of different areas using 
correlation. 

 
Fig. 2. Clustering results of SWK-means algorithm 
showing two clusters of monthly rainfall of 24 stations 
 
TABLE 2. Results of SWK-means on rainfall data at 24 
stations for 5, 10, 15, 20, 25, 30, 35 years 

No. of Records No. of records 
in cluster 1 

No. of records 
in cluster 2 

24 
48 

10 
20 

14 

72 
96 
120 

28 

144 
168 

30 
40 
50 
60 
70 

42 
56 
70 
84 
98 

 
 
6   Discussion and conclusions 

this paper, a few challenges especially related to 
lustering spatial data are pointed out. There exist 
ome problems that k-means method cannot tackle, 

In 
c
s
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especially for dealing with spatial and complex data. 

ed, S.M. Yamany, N. Mohamed, A.A. 
oriarty, “A modified fuzzy c-means 

algorithm for bias field estimation and segmentation 
ata,” IEEE Trans. Medical Imaging, vol. 

[3] 

[6] 

[7] 

[9] in 

[10] l 

[11] 
ng: a survey,” in 

(eds.). 

[12] 

[13] Majid Awan, “Finding 

ore, 23-25 November 2005, pp. 

[14] 

[15] 

[16] a, and K. R. Müller, 

 Joshi, K. Sivakumar, 

[18] 

[19] 

dvances 

 Generation of Data Mining 

[22] 

iscovery and Data Mining 

Among these, the important issues/problems that 
need to be addressed are: i) non-linear separability 
of data in input space, ii) outliers and noise, iii) 
auto-correlation in spatial data, iv) high 
dimensionality of data.  

The strengths of kernel methods are outlined, 
which are helpful for clustering complex and high 
dimensional data that is non-linearly separable in 
input space. Two of the currently proposed kernel 
based algorithms are reviewed and the related 
research issues are identified. Both [2, 4] are 
computationally very intensive, unable to handle 
large datasets and have no mechanism to deal with 
autocorrelation in the spatial data. The method 
proposed in [2] is not feasible to handle high 
dimensional data due to computational overheads, 
whereas the convergence of [4] is an open problem. 
With regard to addressing these problems, we 
presented weighted kernel k-means incorporating 
spatial constraints. The proposed algorithm has the 
mechanism to handle spatial autocorrelation, noise 
and outliers in the spatial data. We are getting 
promising results on our test data sets. It is very 
much hoped that the algorithm would prove to be 
robust and effective for spatial (climate) data 
analysis. In future we plan to investigate the 
estimation of optimal number of clusters 
automatically. 
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