
A Pluggable Security Framework for Message Oriented Middleware

RUEY-SHYANG WU, SHYAN-MING YUAN
Department of Computer Science
National Chiao-Tung University

1001 Ta Hsueh Road, Hsinchu 300,
TAIWAN, R. O. C.

 http://dcsw3.cis.nctu.edu.tw

Abstract: - With the rapid growth of enterprise applications, Message-oriented Middleware (MOM) has become
a widely used tool for delivering messages between organizations. Sun Corporation has been aware of this trend
and has defined a Java Message Service Application Programming Interface (JMS API) standard. This standard
provides a set of uniform interfaces for application development and makes applications more portable.
Persistent Fast Java Messaging (PFJM) is a JMS compliant Message-oriented Middleware and it has some
outstanding features such as persistent message and high performance.

Although MOM has been widely adopted in enterprise environments, security issues were not noticed in the
past. This paper discusses the security issues of MOM. Based on PFJM, a pluggable security framework is
developed. "Pluggable" means that the application developers only need to modify configurations and plug in
many different security modules to build a secure message delivery system. Developers do not have to modify
applications in order to adopt different security strategies, and can be more flexible in development.

Key-Words: - Pluggable Framework, Security, MOM, JMS, JAAS, EAI

1 Introduction
Message-oriented Middleware (MOM) is usefully for
application integration because it is efficient, reliable
and scalable. Applications can exchange data through
MOM quickly; the data will not be lost; adding more
applications in the existed environment is also easy.
For these reasons, MOM has been widely adopted in
enterprise environments. Programmers do not access
lower-lever and disagreeable network protocols
directly because MOM provides a set of readable and
simple application program interfaces (APIs).
Programmers can use these APIs to send and receive
network messages in heterogeneous environments.
By this way, information system can quickly be
available. However, when programmers move from
one MOM system to another, the codes about
communication in an application must be modified
because every MOM’s API is not the same. For
portability, Sun defined a standard of Java Message
Service Application Programming Interface (JMS
API)[1] adopted by many MOM providers. The
advantages of the standard interface are programs
written by this API can run on many MOM products
and programmers only learn one API.
 The latest version of the JMS standard is 1.1.
Many MOM providers support the latest JMS
standard, such as SonicMQ[2], FioranoMQ[3],
OpenJMS[4], and others. Persistent Fast Java
Messaging (PFJM)[5] is a Message-oriented

Middleware. It also follows JMS 1.1 standard while
enhancing the persistent message and high
performance features, greatly increasing the
program’s scalability.

1.1 Motivation
Since the e-commerce was more and more popular,
network security became an important issue. The
messages delivered via network in plaintext may be
snooped by crackers. Therefore, MOM providers
began to add security functions to their products,
including user authentication, trust authorization and
message encryption. However, the functions were
usually and tightly bound with the implementation of
MOM’s core. Furthermore, the security functions
were developed by MOM providers, which are
preventing third-party providers from plugging in
their security functions into MOMs, so this makes
applications less flexible.
 Therefore, this study suggests a pluggable
security framework for MOM. The core concept is
loosely-coupled design. Based on this design, the
MOM’s core functions can be separated from
security functions. The security functionalities can be
packed in the form of modules. Thus, development,
programmers need only be concerned with business
models, rather than security issues. During
deployment, system administrators can simply
construct a secure message system by modifying the

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp1045-1050)

configuration, parameters, and suitable security
modules.
 Based on PFJM, we will develop the modular
concept of security functionalities. In addition, we
will implement several useful security modules to
demonstrate the advantages of the pluggable
framework.

1.2 Objective
Although many MOM products adopt a fixed manner
of authentication and authorization, the program
architecture variation is large and resource
management is difficult. A more flexible way to
accomplish authentication and authorization is
needed. The Java Authentication and Authorization
Service (JAAS) is a framework defined by Sun for
flexible authentication, and is widely used in industry,
but JAAS has many disadvantages in authorization
functions and still has some constraints which
prevent its use in distributed environment. For this
reason, a new, more flexible security framework is
discussed in this paper.
 This paper focuses on adding security functions to
MOM, but not security functionality itself. The
implementation and strength of security functions lie
beyond the scope of our discussion. Pluggable
security provides a security interface for both system
architecture and developers. System architecture can
adjust the security functions based on the business
requirements; developers can write programs without
realizing the underlying security functions of the
MOM. Without the framework, developing MOM
applications will be more flexible, more scalable and
easier.

2 Related Works

2.1 Java Message Services (JMS)
Java Message Service, defined by Sun Corporation
and other cooperators, is a set of standard interfaces
for message delivery. With JMS, programmers can
create, send, receive, and read messages via simple
interfaces. The standard only defines the semantics of
interfaces, not implementation. Following the
interfaces, all MOM providers can have their own
implementation. Today, almost all MOM products
are compatible with JMS. Common design
architectures can be divided into two categories:
central architecture and distributed architecture.

2.1.1 Central Architecture
A master server is responsible for message delivery
and all applications are clients. When an application

wants to send messages, it becomes the sender,
calling the JMS API and giving the destination of the
messages. Messages are delivered from the
application to the central server. The central server
then looks for the destination of the messages and
sends them to the appropriate client. The advantage
of this architecture is that it can simplify system
design and reduce developing effort. However, the
shortcoming of a central architecture is the
server-bottleneck problem. If the central server
experiences low performance or even failure, the
entire message exchange system will becomes
unavailable.
 There are many MOM products such as IBM
WebSphere MQ[18], TIBCO Redenzevous[17],
Sonic Software’s SonicMQError! Reference
source not found.], Fiorano Software’s
FioranoMQError! Reference source not found.]
and OpenJMSError! Reference source not found.]
which is released in the form of open source.

2.1.2 Distributed Architecture
There is no master server under this architecture.
Every client is responsible for message delivery.
Because there is no longer a server, every client must
be aware of some information of the other clients. For
example, clients must know the IP addresses and port
numbers of other clients. The advantage of this
architecture is that loading is divided between every
client, exactly opposite of a central server. As a
result, the single-point-failure problem does not exist
in this architecture. However, resource management
becomes complicated and difficult.
 PFJM (Persistent Fast Java Messaging)[5] is a
JMS compliant product designed by our laboratory.
PFJM adopts the distributed architecture and
implements message delivery protocol using IP
multicast technology. Every PFJM instance
simultaneously acts as a client as well as server.
When one PFJM instance starts, it connects to other
PFJM instances via multicast messages in the
network and obtains all necessary information. When
delivering a message, an application talks to PFJM
and indicates what message to send and which Topic
the message should go. PFJM is responsible for
dividing the message into many equal-sized Memory
Buffer Units (MBUs) and putting them into the
delivery buffer in memory. Then Carrier picks up
these MBUs and actually sends them out via
multicast. While PFJM fills the role of receiver, it
will register the appropriate multicast channel
corresponding to the Topic. Incoming messages
(MBUs) will be received by the Carrier and then
composed by the Composer. Finally, the origin
message is delivered to application.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp1045-1050)

2.2 Security
Network security is becoming more and more
important today due to hackers and computer viruses.
Performance is not only the focus on MOM. Some
are more concerned with issues of privacy,
non-replacement, and non-deniability. This means
that every publisher and subscriber in the message
exchange environment needs to be authenticated, and
messages transferred in the network need to be
encrypted. For this reason, MOM needs more
functions such as user authentication, authorization
and message encryption. Most MOM providers were
not concerned with security issues in the past, but
recently, they have added these functionalities
enthusiastically
 Some industry products use the Cipher interface
of JCE (Java Cryptography Extension)[6]. Its
advantage is that encryption algorithms can be
dynamically added into a Java environment. In Sun’s
implementation, it supports AES, Blowfish, the DES
series, and the RSA series algorithms. However, it
does not provide complete authentication and
authorization functions. Another standard, JAAS
(Java Authentication and Authorization Services)[7]
has those functions but is not included in most
industry products. To provide complete security
functions, a standard interface that has
authentication, authorization and encryption is
necessary.

3 Pluggable Security Framework
Pluggable Security Framework architecture uses a
modular design. After building the core module,
other functionalities can be added to the software as
modules without modifying the software and existing
program code. To complete the architecture, the
interface is designed and the configuration files are
illustrated.

3.1 Architecture
The pluggable security framework can fit most MOM
products, regardless of central architecture and
distributed architecture. However, distributed
architecture is more flexible than central architecture.
For this reason, we used a distributed architecture,
PFJM, as our implementation environment. Fig. 1
shows the architecture. The authentication interface,
authorization interface and encryption interface all
talk to related modules to actually perform
authentication, authorization and encryption.

Fig. 1 Architecture of pluggable framework on PFJM

3.2 Interface Design
MOM security functions include two major
interfaces: authentication and filter interface.
 Authentication Interface. The authentication,
authorization, and encryption interfaces are security
related interfaces. An abridged MOM system should
have authentication functionality. When a client
accesses the MOM system, it should be authenticated
and be a legal user of the system. After successful
authentication, the MOM system may authorize
clients. It determines which Topic the client can
create or remove, and if they can publish to or
subscriber to the topic. Authorization usually
executes with authentication. Similar to
authentication, authorization can be performed on an
authentication server or another authorization server.
When a client passes the processes of authentication
and authorization, and it has the appropriate access, it
can start publishing or subscribing to messages. In
order to protect messages against theft in the
network, published messages should be encrypted.
 Filter Interface: The JMS standard only defines
an essential application based filter. The client
indicates interesting kinds of messages according to
the information in message headers and properties.
But this becomes too simple when applied to
complicated applications. Some MOM providers
may add filters such as content based filters. Another
kind of filter is the authentication based filter where
each client will only receive their own message.
Others without privileges will not get that message.
 From the programmer’s perspective, MOM
should provide the two functions mentioned above so
that applications can have all security features. Based
on requirements, the following interfaces are defined.
The Authentication Interface should have the
LoginModule, AuthorizationModule, and
EncryptionModule. Those modules are embedded

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp1045-1050)

into MOM and programmers will never recognize
those interfaces.

Fig. 2 LoginModule Interface

 The LoginModule covers MOM application
startup, joining the enterprise environment, taking
actions after login, and leaving the environment. The
abort() and commit() commands will be executed if
the login is a failure or success, respectively. The
initialize() command requires some information
about MOM and security requirements. The
callbackHandler acquires security information, such
as username and password, or digital signature. The
sharedState allows two different login modules to
exchange information. The design follows JAAS
architecture.

Fig. 3 AuthorizedModule Interface

 The AuthorizeModule uses login information from
the LoginModule to gain application privileges. After
authentication, the LoginContext will turn control
over to the AuthorizeContext. Just like the
LoginModule, the AuthorizeContext will call every
AuthorizeModule’s initialized method and pass in the
Subject gained from the LoginContext. Moreover, the
AuthorizeContext will pass in an authority data
structure for storing permission information. The
sharedState and options parameter is the same as the
LoginModule. The retrievePolicy() will get privilege
information from the MOM or database. It is defined
by the TopicPermission, like creation, deletion, read
and write. Finally, the cleanup() command will clear
privilege data.

Fig. 4 EncryptModule Interface

 The EnvryptModule will encrypt and decrypt
messages. The initialize() will prepare the encryption
information, such as key information or key
negotiations with peers. The getEncryptedMessage()
and getDecryptedMessage() can perform encryption
and decryption. Finally, it will call the cleanup() to
remove this information.

3.2 Configuration File
The configuration file of PFJM is in XML form. The
security section in this file represents the security
related setting. Fig. 5 is an example; PFJM instance
uses the LDAPLoginModule to login to the message
exchange system. The server option informs the
LDAPLoginModule where the Lightweight Directory
Access Protocol (LDAP) server is located. Then it
uses the LDAPAuthorizeModule to gain its
permission and finally, uses the DESEncryptModule
to encrypt the outgoing message using a Data
Encryption Standard algorithm.

Fig. 5 Configration File

<Security>
 <!-- This part specifies which LoginModule should be invoked -->
 <!-- "needs" option can be 'required','sufficient','requisite','optional' -->
 <LoginModule

name="com.cmc.jms.security.modules.LDAPLoginModule"
needs="required">

 <!-- Optionally to indicate which CallbackHandler should be used -->
 <CallbackHandler

name="com.cmc.jms.examples.MyCallbackHandler"/>
 <Option debug="true"/>
 <Option server="140.113.88.237"/>
 <SharedState myState1="ok"/>
 </LoginModule>

 <!-- This part specifies which AuthorizeModule should be invoked -->
 <AuthorizeModule

name="com.cmc.jms.security.modules.LDAPAuthorizeModule">
 <Option debug="true"/>
 <SharedState myState2="ok"/>
 </AuthorizeModule>

 <!-- This part specifies which EncryptModule should be invoked -->
 <EncryptModule

name="com.cmc.jms.security.modules.DESEncryptModule">
 <Option debug="false"/>
 <SharedState myState3="no"/>
 </EncryptModule>
</Security>

public interface EncryptModule {
 public void initialize (Subject subject, Map sharedState,

Map options);
 public byte[] getEncryptedMessage (byte[] msg)

throws EncryptException;
 public byte[] getDecryptedMessage (byte[] msg)

throws EncryptException;
 public boolean cleanup ();
 public boolean negotiate ();
}

public interface AuthorizeModule {
 public void initialize (Subject subject, Authority authority,

Map sharedState,Map options);
 public boolean retrievePolicy ();
 public boolean cleanup ();
}

public interface LoginModule
{
 boolean abort ();
 boolean commit ();
 void initialize (Subject subject, CallbackHandler callbackHandler,
 java.util.Map sharedState, java.util.Map options);
 boolean login ();
 boolean logout ();
}

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp1045-1050)

4 A Security System on PFJM
After integration with the pluggable framework,
many security modules are used to construct a secure
message exchange environment.

4.1 Overview
In order to integrate authentication and authorization
into PFJM, it is necessary to manage various
resources well, including items such as user list and
topic directory. Unfortunately, this is more difficult
in distributed architecture because the management
protocol may be too complicated and less effective.
To control all information, a Security server was
constructed to handle authentication and privilege
information.

Fig. 6 A secure system architecture for PFJM

environment

4.2 Security Server
LDAP (Lightweight Directory Access Protocol) is
used as the security server. LDAP is a lightweight
protocol for rapidly searching for specific data in a
LDAP server. The data structure in a LDAP server
has a tree architecture and is denoted as DN
(distinguished name). In the server, three resources
are classified: user directory, topic directory and
keystore directory. User directory has everything
about a user such as user name and password. Topic
directory keeps some topic information, like topic
name and user privilege. Keystore directory stores all
private keys.

4.3 Module Design
The LDAPLoginModule authenticates PFJM to the
OpenLDAP server and authorizes via
LDAPAuthorizeModule. Finally DESEncryptModule
encrypts messages that are sent to topic. The
following modules are necessary to complete the
environment:
 LDAPLoginModule: Responsible for user
authentication. It uses the LDAP protocol and
communicates with the OpenLDAP server. The
LDAPLoginModule will ask for user name and
password using CallbackHandler. Then it passes this

information to OpenLDAP using a SSL secure
connection.
 LDAPAuthorizeModule: Used to retrieve
necessary permissions and pass to PFJM. If PFJM
has no permission to perform that action, it returns
the exception.
 DESEncryption: Used to encrypt messages. The
module uses a 64-bit key space and Data Encryption
Standard algorithm.

4.4 Scenario
An OpenLDAP server was set up to implement an
e-Paper publishing system to demonstrate the
advantages of the pluggable framework. The system
flow was as follows:

1. There were three clients. Client A was the
message publisher; client B and C were
receivers, but client B received more
information than C.

2. Client A published messages.
3. Client B and C required a username and

password to identify the user.
4. After authentication, Client B and C received

the message.
 Fig 7 shows the user login screen. The central
screen is Client A that will publish messages. Client
B is at the right screen and Client C is at the left
screen.

Fig. 7 user login screen

 Fig 8 shows the message that users received.
Client B will get more information than Client C.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp1045-1050)

Fig. 8 users receive messages

 The pluggable framework advantages of
flexibility and ease-of-use are illustrated in the above
scenario. The programmers were able to write to a
traditional JMS client and discard security functions.
The pluggable security framework takes over these
functions, such as authentication and message
filtering.

5 Conclusion and Future Works
MOMs simplify the sophisticated processes for
delivering messages. For portability, Sun defined the
JMS API and programs written using JMS API have
the benefit of “write once, run anywhere”. Because
security issues are more and more concerned, every
MOM providers usually add their own security
functions into their products. In this paper, many
MOM security issues, including user authentication,
trust authorization, and message encryption, are
discussed. We surveyed the methods how MOM
products on the market solve these issues. In
addition, we conclude that their design is less flexible
and cannot be adapted to distributed systems.
Therefore, a pluggable security framework with more
flexibility was proposed. We designed our security
functions according to the modular concept, and
defined several interfaces for security modules. We
then built the pluggable security framework into
PFJM and wrote several security modules for it.
Finally, we designed a system that uses a LDAP
server for authentication and authorization to
demonstrate the flexibility of the pluggable security
framework. Using the pluggable framework, the
distinction and collaboration of software components
becomes clearer. Moreover, the maintaining and
adding to the software become more convenient.
 In the future, we will also implement more
security functions, such as asynchronized key
encryption functions. We will also enhance the

security level, like per-topic encryption. Providing
more security functions can not only evaluate the
interface but also make the MOM more secure.

References:
[1] Sun Microsystems, Java Message Service

Specification Version 1.1, April 2002
[2] Sonic Software’s SonicMQ,

http://www.sonicsoftware.com/index.ssp
[3] Fiorano Software's FioranoMQ,

http://www.fiorano.com/products/fmq/overview.
htm

[4] Project OpenJMS,
http://openjms.sourceforge.net/

[5] Yu-Fang Huang, Tsun-Yu Hsiao, Shyan-Ming
Yuan. A Java Message Service with Persistent
Message, Proceeding of Symposium on Digital
Life and Internet Technologies 2003

[6] Sun Microsystem, Java Cryptography Extension
(JCE) Version 1.1

[7] Sun Microsystem, Java Authentication and
Authorization Services (JAAS) Version 1.0,
December 1999

[8] DEC-RFC 86.0 from SunSoft, Unified Login
with Pluggable Authentication Modules (PAM),
October 1995

[9] MIT, Kerberos: The Network Authentication
Protocol

[10] Eric Glass, The NTLM Authentication Protocol,
2003

[11] RFC 3377, Lightweight Directory Access
Protocol (v3) � Technical Specification,
September 2002

[12] National Bureau of Standards, “Data Encryption
Standard,” U.S. Department of Commerce, FIPS
pub. 46, Jan. 1997

[13] National Institute of Standards and Technology
(NIST), “Advanced Encryption Standard (AES)”,
FIPS Publication 197, Nov. 2001,
http://csrc.nist.gov/encryption/aes/ index.html

[14] Project dom4j, http://dom4j.org/
[15] Project OpenLDAP, http://www.openldap.org/
[16] Sun Microsystem, Enterprise JavaBeans

Technology (EJB) Specification Version 2.1
[17] TIBCO Software Inc., http://www.tibco.com/
[18] IBM Software – WebSphere MQ.,

http://www-306.ibm.com/software/integration/w
mq/

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp1045-1050)

