
Depth First Random Walk Based on Symbolic Situated Action

SERIN LEE1, TAKASHI KUBOTA2 and ICHIRO NAKATANI1,2
1. Department of Electronic Engineering

The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, JAPAN

2. Institute of Space and Astronautical Science (ISAS)
Japan Aerospace Exploration Agency (JAXA)

3-1-1 Yoshinodai, Sagamihara-shi, Kanagawa, JAPAN

Abstract: The approaches to make an agent decide the proper actions for achieving the goal might be roughly
categorized into two groups-the classical planning and situated action system. It is well known that each system
has its own strength and weakness with its own application areas. In particular, most of situated action systems do
not directly deal with general problems given in propositional logic. However, to build an embodied intelligent
agent that can perform complicated tasks as well as navigate, we believe its design should be based on both the
situated action approach and symbolic processing, which seem to be antithetic to each other. This paper first
briefly mentions a novel action selector to situatedly extract a set of actions, which is likely to help to achieve the
goal at the current situation, from the relaxed propositional space. After applying the set of actions, the agent
should recognize the new situation for deciding the next proper set of actions. By repeating this procedure, the
agent is expected to arrive at the goal state. However, since those actions are derived from the relaxed space in
which roughly considers the planning problem, this method can be applied only in the deadlock free domain where
fatally wrong decisions cannot be made. To solve the deadlock problems, some of subsequent states after applying
an action should be considered to avoid meeting the deadlocks. This paper proposes a novel method to make the
agent with the situated action selector solve most of deadlock problems without the help of the conventional
planner, which situatedly images the lookahead states. If the agent is caught in a deadlock state during imaginarily
walking on the lookahead states, then before meeting the actual deadlock, the agent could avoid meeting it. The
experimental results of the proposed approach show that the agent can handle most of deadlock problems, and the
quality of the resultant path to the goal is mostly acceptable as well as deriving much faster response time than the
classical planning.

Key-Words: Action Selection, Planning, Situated Action

1 Introduction
The approaches to make an agent decide the proper
actions might be roughly categorized into two
groups-the classical planning and situated action
system. The former which comes from the symbolic
tradition of the field of AI is to extract the complete
path to the given goal state by reasoning about the
agent's own action and situation. Although this
approach can derive the highly goal-driven course of
actions to the goal, it is well known that this task
requires much time and substantial resource. Due to
this reason, the planning approach has not been used in
an embodied agent, which requires other
resource-consuming task such as recognition and
learning.

On the other hand, the situated action approach is to
study on how agents use their circumstances to
achieve intelligent actions, rather than reasoning about

actions away from its circumstances[3][4][5]. Since
this approach is generally to derive not the complete
course to the goal, but only the currently closer state to
the goal and the action to accomplish it at every
situation, the computational requirement could be
reduced compared with the classical planning.
Consequently, the faster response in deriving currently
proper actions for achieving the goal can be achieved,
and therefore an agent based on situated action is
expected to be better situated than the classical planner,
in particular in the dynamic and unanticipated
environment. Furthermore, since the remaining
resource derived by the fast response can be used in
other important tasks such as learning and recognizing
the situation, most of situated action systems have
been actually applied to an embodied agent. However,
as mentioned before, since the congeries of situated
action have denied the abstract reasoning away from

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp159-164)

its real circumstances, the use of symbols and its
processing have been also considered to be
unnecessary.

Although the conventional symbol representation
method might not be optimal to describe our reasoning,
over the past 35 years, a substantial number of symbol
systems have been constructed and tested successfully,
for their ability to simulate human thinking and
learning over a wide range of task domains[6]. We
also believe the conventional symbol representation
can solely provide rich expressiveness to describe the
general problems.

However, since the situated action approach has
regarded the use of symbols and their processing to be
unnecessary, and furthermore has not applied the
symbol. Therefore, the situated action approach,
which opposes the use of symbolic expression
necessary to describe problems given to the agent, has
been applied to only a restricted problem.

We believe the design of an embodied agent which
can deal with more general problems should be based
on both the situated action approach and symbolic
processing, which seem to be antithetic to each other.

Therefore, we first briefly mention a novel method
which situatedely derives the approximation of the
above action from the relaxed propositional space,
which roughly considers the given planning problem.
Since this relaxed propositional space for deriving
only the set of actions could be built small, and the
action would be also extracted very fast, the response
of the agent to the environment is consequently
expected to be fast. It is believed that this can make the
agent be well situated in solving the complicated tasks.

By the proposed method for deriving the situated
action, the action, which is necessary to achieve the
goal, is approximately extracted from currently
executable actions at every situation. After applying
the extracted set of actions, the agent should recognize
the new situation to decide the next proper set of
actions. By repeating this procedure, the agent is
expected to arrive at the goal state.

However, since those actions are just derived from
the relaxed space in which roughly considers the
planning problem, this method can be applied only in
the deadlock free domain where fatally wrong
decisions cannot be made. To solve the deadlock
problems, some of subsequent states after applying an
action should be considered to avoid meeting the
deadlocks. This paper proposes a novel method to
make the agent with the situated action selector solve
most of deadlock problems without the help of the
conventional planner, which situatedly images the

lookahead states. If the agent is caught in a deadlock
state during imaginarily walking on the lookahead
states, then before meeting the actual deadlock, the
agent could avoid meeting it.

This paper is organized as follows. After defining
notations used in this paper, we briefly present how
the situated action can be derived from the relaxed
propositional space. And then, this paper explains a
novel strategy based on the situated action selector to
avoid meeting the deadlock. This paper finally
provides its experimental results before conclusion.

2 Definitions
A state S is a finite set of logical atoms (facts). A
planning task P=(O, I, G) is a triple where O is the set
of actions, and I (the initial state), and G (the goals)
are set of atoms. An action o is STRIPS action. {pre(o),
add(o), del(o)} denotes the precondition, addition
effect, and deletion effect of o .

The result of applying o to a state S becomes
Result(,) (()) \ ()S o S add o del o< > = U if ()pre o S⊆ .
Otherwise, it is undefined.

A relaxed propositional space R is built by the two
assumptions: (1) The deletion effect of actions is
ignored. That is, a fact is not deleted by performing
actions. (2) A fact which can be achieved at some time
is regarded to be achieved at the time. That is, the case
in which the time to achieve the fact is delayed is not
considered.

The set Fg is a set of currently achievable facts
which is necessary to accomplish G. However, the
conventional planner is required to exactly derive Fg.
Therefore, the approximation of Fg is derived from R,
and the set Fag denotes it. The set Aag is a set of
currently executable actions that is required to achieve
each fact of Fag. However, because all actions included
in Aag are not always applicable at the same time, a set

agL A⊆ which has a precedence over other subsets of
Aag should be derived. That is, the agent is actually
expected to arrive at the goal through applying L at
every situation.
 Then, as mentioned before, the agent with only the
above situated action selector can be caught in the
deadlock. Therefore, to make the agent avoid meeting
the deadlock through imaging the lookahead states,
two ques are used. One is the primary imagination
queue, Imq, that contains at most n elements. Each of
the elements corresponds to the initial state or
situations derived by the situated action selector. Like
the primary imagination queue, the secondary

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp159-164)

imagination queue, Imsq, also contains at most n
elements, and is used instead of Imq when the situated
action selector meets the deadlock during filling Imq.

3 Classical Planning
Since 1960's, various algorithms have been proposed
to make an agent build the plan for itself. In particular,
the search-based planner has been one of the most
interesting approaches. The well-known graphplan is
also one of those state space search-based planners,
and has been dealt from various aspects[1].

The planning space of the graphplan is a directed
graph, and includes two types of nodes, proposition
nodes and action nodes, arranged into levels. Nodes in
odd numbered levels correspond to action instances;
there is one such node for each action instance whose
preconditions (facts) are present, and are mutually
consistent at the previous even numbered level. All of
the facts are transferred to the next level by the
maintain action (noop). Since the specific level
denotes a relative time, mutex (mutually exclusion
relation) represents the exclusive relation in the same
level. After the planning graph is built until the last
fact level includes all of goal facts that do not include
mutex, the graphplan performs a backward-chaining
search on the space to look for the plan.

In this paper, Ai and Fi denotes the i-th action and
fact level, respectively. For example, A0 denotes the
set of action that is currently executable.
 Fig. 1 shows an example of the planning graph for
the rocket problem described in PDDL.

Fig. 1 Example of the planning graph

4 Situated Action Selector
4.1 Relaxed Propositional Space

The relaxed propositional space R is made in similar
manner to the relaxed planning graph space used in
some heuristic planners such as FF[2]. As defined in
the previous section, since it is assumed in building R
that a fact is not deleted by the action, the deletion
effects of actions are ignored. Also, since the case in
which delays the time when a fact is achieved is
ignored in building R, if the action o is included in the
leveli of the planning graph space, then o is not
appeared in the levelj (j > i).

As a result, R can be considered as the graphplan
space built by

• P’=(O’, S, G) , where

' { (), (), | ((), (), ()) }O pre o add o pre o add o del o O= ∅ ⊂ , and
S denotes the current state.
• If io level∈ , then o is not appeared in the levelj (j >
i).
• The last fact level includes all of goal facts.

An example on the relaxed propositional space for the
rocket problem is shown in Fig. 2.

Fig. 2 Example of the relaxed propositional space

4.2 Extraction of Aag and L
After building the relaxed propositional space R, the
simple backward chaining is performed from each
goal fact to the action level 0. Since this space does not
include the deletion (negation) fact, there is no
exclusive relation (mutex) between two actions or
facts.

Note that in building R, the case in which delays the
time when the fact is achieved is not considered.
Therefore, during this backward chaining, if there is a
noop for achieving a fact, then the noop is first
selected[2]. Otherwise, a non-noop is randomly
selected because the minimum number of non-noops

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp159-164)

over the entire level cannot be immediately derived
from R.

In this paper, we regard the element extracted from
F1 and A0 by the above backtracking strategy through
noop first heuristic with randomly selected non-noops
as Fag and Aag, respectively. This Aag has some
similarities with heuristic actions proposed in various
planners such as the helpful action of FF[2].

After deriving Aag from the relaxed propositional
space R, L which has a precedence over other subsets
of Aag is directly extracted from Aag by the following
algorithm.

(1) The candidate set of L, Lcand is initialized to Aag.
(2) If some action in Lcand deletes one of the

precondition of other actions, then the action is
removed from Lcand. For example, if i jo op , then oj
cannot become the element of L.

(3) If some action in Lcand deletes the fact of Fag
which is added by the action o in Lcand, o is removed
from Lcand

(4) The noop in Lcand is removed.
(5) The candidate set Lcand becomes L.
In Fig. 2, Aag = A0 = {(load A L), (load B L), (move

L P)}, and L = {(load A L), (load B L)}.

4.3 Limitations of the Situated Action
Generator

In building R, the case in which delays the time
when the fact of Fag is achieved is not considered.
However, there is some case in which the achievement
of some facts of Fag must be delayed.

The decision on which facts should be delayed
requires the same task as the classical planning.
Nevertheless, if this is not decided, then the agent with
the situated action generator could be caught in the
deadlock.

Even if the problem is deadlock free, there can be
the case in which the agent only with the situated
action generatoror is caught into a cyclic routine (e.g.
o1 p o2 p o1 p o2 p o1 p o2 …). And thus, to escape
the routine, the randomness should be added to the
situated action generator. This paper deals with it by
randomly selecting one action out of Aag with
probability ζ , or out of A0 with probability ζ−1 .
Since, in our experience, the agent is rarely caught in
the circular routine, ζζ −>> 1 .

5 Situated Imagination of Lookahead
States
5.1 Detecting Deadlocks

From the definition of the deadlock, the agent cannot
arrive at the goal state from the deadlock state. That is,
it means that some goal facts are not added to the
subsequent states after meeting the deadlock. If we
consider the assumptions proposed to build the relaxed
propositional space, then the situated action selector
can be considered to meet the deadlock when R
contains successively equivalent fact levels (i.e. Fi =
Fi+1).

5.2 Algorithm Sketch
As long as the problem is deadlock free where fatally
wrong decisions cannot be made, the situated action
selector mentioned in the previous section is complete.
However, all subsequent states after applying an
action should be considered to solve the deadlock
problems, and thus the conventional planner is
eventually required to derive them.

This section proposes a new method to make the
agent with the situated action selector solve most of
deadlock problems without the help of the
conventional planner, which situatedly images the
lookahead states. If the agent itself in the imagination
is caught in a deadlock state, then before meeting the
actual deadlock, the agent could avoid meeting it.

As defined before, two queues, Imq and Imsq, are
provided to make the agent image the lookahead states.
The situations derived by imaginarily applying actions
of Ls are written to Imq. If Imq is full of those
situations (that is, n situations), then the sets of actions
which achieved each situation of Imq are actually
performed by the agent. If the situated action selector
meets the deadlock during filling Imq, then one of the
situations written to Imq is randomly selected, and
then written to the other queue Imsq. Like the case of
Imq, the situations derived by imaginarily applying Ls
from the randomly selected state are written to Imsq. If
Imsq is full of the situations derived by the situated
action selector, then Imsq is substituted for Imq, and
then the sets of actions which achieved each state of
Imq (that is, Imsq) are performed by the agent.

Similar to the previous case, if the situated action
selector meets the deadlock even during filling Imsq,
then one of the situations written to Imq or Imsq is
randomly selected, and then begin to fill Imsq from the
selected state again. What the agent cannot fill Imq
(Imsq) even after enough trials means that the agent
having an imagination depth, n could not escape from
the deadlock.

In fact, this algorithm is to roughly perform n depth
first state space search walking on the lookahead states.

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp159-164)

 0.01

 0.1

 1

 10

 2 4 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

Problems (Airport)

situated action
FF

LPG-td

Therefore, as we shall see, if the deadlock is beyond n
depth, and the agent cannot avoid meeting it, then the
agent can be caught in the deadlock.

5.3 Experimental Results
We compared two classical STRIPS planners-FF
v2.3[2] and LPG-td (speed)[7] with our algorithm for
the situated imagination, which realizes the depth first
random walk on the lookahead states. They are all
implemented in C language, and no other particular
library is used. To compare how fast the proposed
approach can extract the currently proper action in
solving deadlock or deadlock free problems, we
examined the runtime which the classical planners
build a plan only once at the initial state and the
average of latent response times which the situated
action selector fills the imaginary queue, Imq, until
achieving the goal. And then, the qualities (plan
length) of the plan by classical planners, and post-hoc
represented plan by the algorithm for the situated
imagination were compared.

Various planning domains were used in our
experiments, and all of the experimental results were
similar to each other. In this paper, we introduce the
experimental results performed on three domains: the
Airport domain, the Schedule domain, and the Freecell
domain. The problems included in each domain can be
deadlock or deadlock free.

The results are shown in Fig. 3 – Fig. 8.

Fig. 3 Time on Airport problems

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16

P
la

n
le

ng
th

Problems (Airport)

situated action
FF

LPG-td

Fig. 4 Plan length on Airport problems

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14

T
im

e
(s

ec
on

ds
)

Problems (Schedule)

situated action
FF

 Fig. 5 Time on Schedule problems

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12 14

P
la

n
le

ng
th

Problems (Schedule)

situated action
FF

Fig. 6 Plan length on Schedule problems

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp159-164)

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

Problems (Freecell)

situated action
FF

LPG-td

Fig. 7 Time on Freecell problems

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12 14 16

P
la

n
le

ng
th

Problems (Freecell)

situated action
FF

LPG-td

Fig. 8 Plan length on Freecell problems

5.4 Discussion

Although the proposed approach for situatedly
imagination of lookahead states could solve much of
the deadlock problems, some of the problems could
not be solved by the proposed approach. These cases
where the proposed approach could not solve the
problem were caused by the following:

• Unavoidable Deadlocks: Since the agent has the
limited imaginary depth, if the deadlock is beyond the
depth at certain situation, and the agent cannot avoid
to meeting it from the situation, then the agent can be
caught into the deadlock.

• Excessively Time Consuming: In the case where
the poor paths of actions, which are not included in the
optimal path, include a lot of deadlocks, it could take
much time to avoid meeting them (i.e. requires much
imagination for finding safe lookahead states), even
than conventional planners.

However, in the case where the proposed approach
could derive the result, the response time was much
faster than the runtime of the conventional planner,
and its quality was mostly acceptable.

6 Conclusion
We first presented the novel action selector to
situatedly extract a set of actions, which is likely to
help to achieve the goal at the current situation. To
derive it, two assumptions were proposed: a fact is not
deleted by the action, and a fact which could be
achieved at a certain time is regarded to be achieved at
that time. Although these assumptions make the agent
derive the situated action even in symbolic processing,
the pure situated action selector cannot deal with the
deadlock domain where fatally wrong decisions can be
made. To allow the situated action selector to solve
more general problems including deadlocks, we
proposed the algorithm, which can situatedly images
the lookahead states. If the agent itself in the
imagination is caught in a deadlock state, then before
meeting the actual deadlock, the agent could avoid
meeting it. The experimental results showed the very
fast response to the situation solving various planning
problems. We believe learning of the problem
structure can enhance the quality of the proposed
method, and moreover could also give a clue to
understand intelligence itself.

References:
[1] Avrim L. Blum and Merrick L. Furst “Fast Planning
Through Planning Graph Analysis”, Artificial
Intelligence, vol. 90, 1997
[2] Jörg Hoffman and Bernard Nebel, “ The FF Planning
Systems: Fast Plan Generation Through Heuristic
Search”, Journal of Artificial Intelligence Research,
vol.14, 2001
[3] Ronald C. Arkin, Behavior-Based Robotics, The MIT
Press, 1998
[4] Lucy Suchman, Plans and Situated Actions - The
Problem of Human-Machine Communication,
Cambridge University Press, 1987
[5] Rodney A. Brooks, “A robust layered control system
for a mobile robot”, IEEE Journal of Robotics and
Automation, vol. 2, 1986
[6] Alonso H. Vera and Herbert A. Simon, Situated
Action: A Symbolic Interpretation, Cognitive Science,
vol. 17, 1993
[7] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina,
“Planning through Stochastic Local Search and
Temporal Action Graphs in LPG”, Journal of Artificial
Intelligence Research, vol. 20, 2003

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp159-164)

