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Abstract: The approaches to make an agent decide the proper actions for achieving the goal might be roughly 
categorized into two groups-the classical planning and situated action system. It is well known that each system 
has its own strength and weakness with its own application areas. In particular, most of situated action systems do 
not directly deal with general problems given in propositional logic. However, to build an embodied intelligent 
agent that can perform complicated tasks as well as navigate, we believe its design should be based on both the 
situated action approach and symbolic processing, which seem to be antithetic to each other. This paper first 
briefly mentions a novel action selector to situatedly extract a set of actions, which is likely to help to achieve the 
goal at the current situation, from the relaxed propositional space. After applying the set of actions, the agent 
should recognize the new situation for deciding the next proper set of actions. By repeating this procedure, the 
agent is expected to arrive at the goal state. However, since those actions are derived from the relaxed space in 
which roughly considers the planning problem, this method can be applied only in the deadlock free domain where 
fatally wrong decisions cannot be made. To solve the deadlock problems, some of subsequent states after applying 
an action should be considered to avoid meeting the deadlocks. This paper proposes a novel method to make the 
agent with the situated action selector solve most of deadlock problems without the help of the conventional 
planner, which situatedly images the lookahead states. If the agent is caught in a deadlock state during imaginarily 
walking on the lookahead states, then before meeting the actual deadlock, the agent could avoid meeting it. The 
experimental results of the proposed approach show that the agent can handle most of deadlock problems, and the 
quality of the resultant path to the goal is mostly acceptable as well as deriving much faster response time than the 
classical planning.  
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1   Introduction 
The approaches to make an agent decide the proper 
actions might be roughly categorized into two 
groups-the classical planning and situated action 
system. The former which comes from the symbolic 
tradition of the field of AI is to extract the complete 
path to the given goal state by reasoning about the 
agent's own action and situation. Although this 
approach can derive the highly goal-driven course of 
actions to the goal, it is well known that this task 
requires much time and substantial resource. Due to 
this reason, the planning approach has not been used in 
an embodied agent, which requires other 
resource-consuming task such as recognition and 
learning.  

On the other hand, the situated action approach is to 
study on how agents use their circumstances to 
achieve intelligent actions, rather than reasoning about 

actions away from its circumstances[3][4][5]. Since 
this approach is generally to derive not the complete 
course to the goal, but only the currently closer state to 
the goal and the action to accomplish it at every 
situation, the computational requirement could be 
reduced compared with the classical planning.    
Consequently, the faster response in deriving currently 
proper actions for achieving the goal can be achieved, 
and therefore an agent based on situated action is 
expected to be better situated than the classical planner, 
in particular in the dynamic and unanticipated 
environment. Furthermore, since the remaining 
resource derived by the fast response can be used in 
other important tasks such as learning and recognizing 
the situation, most of situated action systems have 
been actually applied to an embodied agent. However, 
as mentioned before, since the congeries of situated 
action have denied the abstract reasoning away from 
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its real circumstances, the use of symbols and its 
processing have been also considered to be 
unnecessary. 

Although the conventional symbol representation 
method might not be optimal to describe our reasoning, 
over the past 35 years, a substantial number of symbol 
systems have been constructed and tested successfully, 
for their ability to simulate human thinking and 
learning over a wide range of task domains[6]. We 
also believe the conventional symbol representation 
can solely provide rich expressiveness to describe the 
general problems.  

However, since the situated action approach has 
regarded the use of symbols and their processing to be 
unnecessary, and furthermore has not applied the 
symbol. Therefore, the situated action approach, 
which opposes the use of symbolic expression 
necessary to describe problems given to the agent, has 
been applied to only a restricted problem.     

We believe the design of an embodied agent which 
can deal with more general problems should be based 
on both the situated action approach and symbolic 
processing, which seem to be antithetic to each other. 

Therefore, we first briefly mention a novel method 
which situatedely derives the approximation of the 
above action from the relaxed propositional space, 
which roughly considers the given planning problem. 
Since this relaxed propositional space for deriving 
only the set of actions could be built small, and the 
action would be also extracted very fast, the response 
of the agent to the environment is consequently 
expected to be fast. It is believed that this can make the 
agent be well situated in solving the complicated tasks. 

By the proposed method for deriving the situated 
action, the action, which is necessary to achieve the 
goal, is approximately extracted from currently 
executable actions at every situation. After applying 
the extracted set of actions, the agent should recognize 
the new situation to decide the next proper set of 
actions. By repeating this procedure, the agent is 
expected to arrive at the goal state.  

However, since those actions are just derived from 
the relaxed space in which roughly considers the 
planning problem, this method can be applied only in 
the deadlock free domain where fatally wrong 
decisions cannot be made. To solve the deadlock 
problems, some of subsequent states after applying an 
action should be considered to avoid meeting the 
deadlocks. This paper proposes a novel method to 
make the agent with the situated action selector solve 
most of deadlock problems without the help of the 
conventional planner, which situatedly images the 

lookahead states. If the agent is caught in a deadlock 
state during imaginarily walking on the lookahead 
states, then before meeting the actual deadlock, the 
agent could avoid meeting it. 

This paper is organized as follows. After defining 
notations used in this paper, we briefly present how 
the situated action can be derived from the relaxed 
propositional space. And then, this paper explains a 
novel strategy based on the situated action selector to 
avoid meeting the deadlock. This paper finally 
provides its experimental results before conclusion. 
 
2   Definitions 
A state S is a finite set of logical atoms (facts). A 
planning task P=(O, I, G) is a triple where O  is the set 
of actions, and I (the initial state), and G (the goals) 
are set of atoms. An action o is STRIPS action. {pre(o), 
add(o), del(o)} denotes the precondition, addition 
effect, and deletion effect of o .  

The result of applying o to a state S becomes 
Result( , ) ( ( )) \ ( )S o S add o del o< > = U  if ( )pre o S⊆ . 
Otherwise, it is undefined.  

A relaxed propositional space R is built by the two 
assumptions: (1) The deletion effect of actions is 
ignored. That is, a fact is not deleted by performing 
actions. (2)  A fact which can be achieved at some time 
is regarded to be achieved at the time. That is, the case 
in which the time to achieve the fact is delayed is not 
considered. 

The set Fg is a set of currently achievable facts 
which is necessary to accomplish G. However, the 
conventional planner is required to exactly derive Fg. 
Therefore, the approximation of Fg is derived from R, 
and the set Fag denotes it. The set Aag is a set of 
currently executable actions that is required to achieve 
each fact of Fag. However, because all actions included 
in Aag are not always applicable at the same time, a set 

agL A⊆  which has a precedence over other subsets of 
Aag should be derived. That is, the agent is actually 
expected to arrive at the goal through applying L at 
every situation. 
  Then, as mentioned before, the agent with only the 
above situated action selector can be caught in the 
deadlock. Therefore, to make the agent avoid meeting 
the deadlock through imaging the lookahead states, 
two ques are used. One is the primary imagination 
queue, Imq, that contains at most n elements. Each of 
the elements corresponds to the initial state or 
situations derived by the situated action selector. Like 
the primary imagination queue, the secondary 

Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China, April 16-18, 2006 (pp159-164)



imagination queue, Imsq, also contains at most n 
elements, and is used instead of Imq when the situated 
action selector meets the deadlock during filling Imq. 
 
3   Classical Planning 
Since 1960's, various algorithms have been proposed 
to make an agent build the plan for itself. In particular, 
the search-based planner has been one of the most 
interesting approaches. The well-known graphplan is 
also one of those state space search-based planners, 
and has been dealt from various aspects[1]. 

The planning space of the graphplan is a directed 
graph, and includes two types of nodes, proposition 
nodes and action nodes, arranged into levels. Nodes in 
odd numbered levels correspond to action instances; 
there is one such node for each action instance whose 
preconditions (facts) are present, and are mutually 
consistent at the previous even numbered level. All of 
the facts are transferred to the next level by the 
maintain action (noop). Since the specific level 
denotes a relative time, mutex (mutually exclusion 
relation) represents the exclusive relation in the same 
level. After the planning graph is built until the last 
fact level includes all of goal facts that do not include 
mutex, the graphplan performs a backward-chaining 
search on the space to look for the plan.  

In this paper, Ai and Fi denotes the i-th action and 
fact level, respectively. For example, A0 denotes the 
set of action that is currently executable. 
   Fig. 1 shows an example of the planning graph for 
the rocket problem described in PDDL. 

Fig. 1 Example of the planning graph 
 
4   Situated Action Selector 
4.1 Relaxed Propositional Space 

The relaxed propositional space R is made in similar 
manner to the relaxed planning graph space used in 
some heuristic planners such as FF[2]. As defined in 
the previous section, since it is assumed in building R 
that a fact is not deleted by the action, the deletion 
effects of actions are ignored. Also, since the case in 
which delays the time when a fact is achieved is 
ignored in building R, if the action o is included in the 
leveli of the planning graph space, then o is not 
appeared in the levelj (j > i). 

As a result, R can be considered as the graphplan 
space built by  
  
•  P’=(O’, S, G) , where 

' { ( ), ( ), | ( ( ), ( ), ( )) }O pre o add o pre o add o del o O= ∅ ⊂ , and 
S denotes the current state. 
•  If io level∈ , then o is not appeared in the levelj (j > 
i). 
•   The last fact level includes all of goal facts. 
 
An example on the relaxed propositional space for the 
rocket problem is shown in Fig. 2. 

 
Fig. 2 Example of the relaxed propositional space 

 
4.2 Extraction of Aag and L 
After building the relaxed propositional space R, the 
simple backward chaining is performed from each 
goal fact to the action level 0. Since this space does not 
include the deletion (negation) fact, there is no 
exclusive relation (mutex) between two actions or 
facts.  

Note that in building R, the case in which delays the 
time when the fact is achieved is not considered. 
Therefore, during this backward chaining, if there is a 
noop for achieving a fact, then the noop is first 
selected[2]. Otherwise, a non-noop is randomly 
selected because the minimum number of non-noops 
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over the entire level cannot be immediately derived 
from R. 

In this paper, we regard the element extracted from 
F1 and A0 by the above backtracking strategy through 
noop first heuristic with randomly selected non-noops 
as Fag and Aag, respectively. This Aag has some 
similarities with heuristic actions proposed in various 
planners such as the helpful action of FF[2]. 

After deriving Aag from the relaxed propositional 
space R, L which has a precedence over other subsets 
of Aag is directly extracted from Aag by the following 
algorithm. 

(1)  The candidate set of L, Lcand is initialized to Aag. 
(2) If some action in Lcand deletes one of the 

precondition of other actions, then the action is 
removed from Lcand. For example, if i jo op , then oj 
cannot become the element of L. 

(3) If some action in Lcand deletes the fact of Fag 
which is added by the action o in Lcand, o is removed 
from Lcand 

(4) The noop in Lcand is removed. 
(5) The candidate set Lcand becomes L. 
In Fig. 2, Aag = A0 = {(load A L), (load B L), (move 

L P)}, and L = {(load A L), (load B L)}. 
 

4.3 Limitations of the Situated Action 
Generator 

In building R, the case in which delays the time 
when the fact of Fag is achieved is not considered. 
However, there is some case in which the achievement 
of some facts of Fag must be delayed.  

The decision on which facts should be delayed 
requires the same task as the classical planning. 
Nevertheless, if this is not decided, then the agent with 
the situated action generator could be caught in the 
deadlock. 

Even if the problem is deadlock free, there can be 
the case in which the agent only with the situated 
action generatoror is caught into a cyclic routine (e.g. 
o1 p o2 p o1 p o2  p o1 p o2 …). And thus, to escape 
the routine, the randomness should be added to the 
situated action generator. This paper deals with it by 
randomly selecting one action out of Aag with 
probability ζ , or out of A0 with probability ζ−1 . 
Since, in our experience, the agent is rarely caught in 
the circular routine, ζζ −>> 1 . 
 
5   Situated Imagination of Lookahead 
States 
5.1 Detecting Deadlocks 

From the definition of the deadlock, the agent cannot 
arrive at the goal state from the deadlock state. That is, 
it means that some goal facts are not added to the 
subsequent states after meeting the deadlock. If we 
consider the assumptions proposed to build the relaxed 
propositional space, then the situated action selector 
can be considered to meet the deadlock when R 
contains successively equivalent fact levels (i.e. Fi = 
Fi+1 ). 
 
5.2 Algorithm Sketch 
As long as the problem is deadlock free where fatally 
wrong decisions cannot be made, the situated action 
selector mentioned in the previous section is complete. 
However, all subsequent states after applying an 
action should be considered to solve the deadlock 
problems, and thus the conventional planner is 
eventually required to derive them. 

This section proposes a new method to make the 
agent with the situated action selector solve most of 
deadlock problems without the help of the 
conventional planner, which situatedly images the 
lookahead states. If the agent itself in the imagination 
is caught in a deadlock state, then before meeting the 
actual deadlock, the agent could avoid meeting it. 

As defined before, two queues, Imq and Imsq, are 
provided to make the agent image the lookahead states. 
The situations derived by imaginarily applying actions 
of Ls are written to Imq. If Imq is full of those 
situations (that is, n situations), then the sets of actions 
which achieved each situation of Imq are actually 
performed by the agent. If the situated action selector 
meets the deadlock during filling Imq, then one of the 
situations written to Imq is randomly selected, and 
then written to the other queue Imsq. Like the case of 
Imq, the situations derived by imaginarily applying Ls 
from the randomly selected state are written to Imsq. If 
Imsq  is full of the situations derived by the situated 
action selector, then Imsq is substituted for Imq, and 
then the sets of actions which achieved each state of 
Imq (that is, Imsq) are performed by the agent.  

Similar to the previous case, if the situated action 
selector meets the deadlock even during filling Imsq, 
then one of the situations written to Imq or Imsq is 
randomly selected, and then begin to fill Imsq from the 
selected state again. What the agent cannot fill Imq 
(Imsq) even after enough trials means that the agent 
having an imagination depth, n could not escape from 
the deadlock.  

In fact, this algorithm is to roughly perform n depth 
first state space search walking on the lookahead states. 
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Therefore, as we shall see, if the deadlock is beyond n 
depth, and the agent cannot avoid meeting it, then the 
agent can be caught in the deadlock. 
 
5.3 Experimental Results 
We compared two classical STRIPS planners-FF 
v2.3[2] and LPG-td (speed)[7] with our algorithm for 
the situated imagination, which realizes the depth first 
random walk on the lookahead states. They are all 
implemented in C language, and no other particular 
library is used. To compare how fast the proposed 
approach can extract the currently proper action in 
solving deadlock or deadlock free problems, we 
examined the runtime which the classical planners 
build a plan only once at the initial state and the 
average of latent response times which the situated 
action selector fills the imaginary queue, Imq, until 
achieving the goal. And then, the qualities (plan 
length) of the plan by classical planners, and post-hoc 
represented plan by the algorithm for the situated 
imagination were compared.  

Various planning domains were used in our 
experiments, and all of the experimental results were 
similar to each other. In this paper, we introduce the 
experimental results performed on three domains: the 
Airport domain, the Schedule domain, and the Freecell 
domain. The problems included in each domain can be 
deadlock or deadlock free. 

The results are shown in Fig. 3 – Fig. 8. 
 

 
Fig. 3 Time on Airport problems 
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Fig. 4 Plan length on Airport problems 
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 Fig. 5 Time on Schedule problems 
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Fig. 6 Plan length on Schedule problems 
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Fig. 7 Time on Freecell problems 
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Fig. 8 Plan length on Freecell problems 
 
5.4 Discussion 

Although the proposed approach for situatedly 
imagination of lookahead states could solve much of 
the deadlock problems, some of the problems could 
not be solved by the proposed approach. These cases 
where the proposed approach could not solve the 
problem were caused by the following: 

•  Unavoidable Deadlocks: Since the agent has the 
limited imaginary depth, if the deadlock is beyond the 
depth at certain situation, and the agent cannot avoid 
to meeting it from the situation, then the agent can be 
caught into the deadlock. 

•  Excessively Time Consuming: In the case where 
the poor paths of actions, which are not included in the 
optimal path, include a lot of deadlocks, it could take 
much time to avoid meeting them (i.e. requires much 
imagination for finding safe lookahead states), even 
than conventional planners.  

However, in the case where the proposed approach 
could derive the result, the response time was much 
faster than the runtime of the conventional planner, 
and its quality was mostly acceptable. 
 
6   Conclusion 
We first presented the novel action selector to 
situatedly extract a set of actions, which is likely to 
help to achieve the goal at the current situation. To 
derive it, two assumptions were proposed: a fact is not 
deleted by the action, and a fact which could be 
achieved at a certain time is regarded to be achieved at 
that time. Although these assumptions make the agent 
derive the situated action even in symbolic processing, 
the pure situated action selector cannot deal with the 
deadlock domain where fatally wrong decisions can be 
made. To allow the situated action selector to solve 
more general problems including deadlocks, we 
proposed the algorithm, which can situatedly images 
the lookahead states. If the agent itself in the 
imagination is caught in a deadlock state, then before 
meeting the actual deadlock, the agent could avoid 
meeting it. The experimental results showed the very 
fast response to the situation solving various planning 
problems. We believe learning of the problem 
structure can enhance the quality of the proposed 
method, and moreover could also give a clue to 
understand intelligence itself. 
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