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Abstract: The large volume of images used in Distance Learning System are required to be compressed in a
good ratio to release the storage loading of computer servers. A new image coding Scheme based on Principle
Components Analysis (PCA) and Wavelet decomposition is proposed in this paper. Our algorithm includes 1)
Principle Components Analysis (PCA)to reduce the information redundancies along temporal dimension; 2) a
texture energy (TE) based technique used to optimize the PCA analysis; 3) Wavelet decomposition and optimized
LBG algorithm for compression along spatial dimention. The experimental results demonstrate that our proposed
coding scheme achieves good performance.
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1 Introduction

To make the distance learning media, the speeches of
lecturers are recorded as audio files and the handouts
are stored as images to make the distance learning me-
dia. According to our experience, the students could
be satisfied by low quality audios but they are very
sensitive to the quality of images. This causes very
high pressure to the servers on VOD services and stor-
age capacity. A new image coding technique is re-
quired to compress the handout images.

The most popular image compression standard is
JPEG (Joint Photographic Experts Group) [1] that is
based on DCT (Discrete Cosine Transform). This
standard is open blamed for the blocking effects
at high compression ratios [2]. A DWT (Discrete
Wavelet Transform) based standard JPEG2000 was
established in recent years to overcome that drawback
[3]. In stead of operating on 8x8 segments as DCT,
wavelet transform applies a global operation on an en-
tire image to avoid the blocking artifacts. By combing
wavelet transform and quantization techniques, many
wavelet based image coding schemes have been pro-
posed [4] [5] [6] [7]. Because Vector Quantization
(VQ) usually produces better quantization than Scalar
Quantization (SQ) [8], most of current wavelet based
image coding schemes employ VQ for quantization.
The codebook of VQ is usually generated through
LBG [7] [9] or lattice based methods.

Since there are quantities of temporal redundan-
cies in a sequence of handout images, compression
can also be performed in the temporal domain. MPEG
(Moving Pictures Experts Group) [10] is the most

popular compression standard for video sequence.
But it is more suited to a video sequence captured in
real-time rather than a sequence of images manually
arranged. As a data-driven technique to describe the
variance-covariance structure of a data set [11], prin-
ciple component analysis (PCA) has the ability to re-
duce large data sets to a smaller number of significant
channels. Many PCA based techniques have been pro-
posed for the compression of dynamic images in tem-
poral domain [12] [13].

By analyzing the compression techniques in both
temporal and spatial domain, we propose a new
compression scheme to improve the compression ef-
ficiency of Distance Learning images. Our algo-
rithm Our algorithm includes 1) Principle Compo-
nents Analysis (PCA)to reduce the information redun-
dancies along temporal dimension; 2) a texture energy
(TE) based technique used to optimize the PCA analy-
sis; 3) Wavelet decomposition and optimized LBG
algorithm for compression along spatial dimension.
Figure 1 gives an overview of the proposed scheme.

2 TE Based Classfication

Since there are always quantities of temporal redun-
dancies in a sequence of handout images, principle
component analysis (PCA) is an effective method to
do the compress. Figure 2 shows some examples of
some temporal redundancies in a sequence of handout
images.

However, a good compression will not be ex-
pected by applying PCA directly on a sequence of
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Figure 1. Encoding/decoding scheme

handout images because PCA is only well suited to
highly correlated data [11] but the images of hand-
out are often obtained from many different sources
(the difference of image nature at different rows of
figure 2 is obvious). In order to produce better com-
pression, we apply image classification before PCA.
Classes comprising relatively highly correlated im-
ages are generated by extensively using of a texture
based technique proposed in our previous work [14].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Handout image sequences

There are a finite number of classes Ci, i =
1, . . . , Z . A training collection comprising a number
of training images belonging to each class is available.
Based on the feature extracted from these sets, a clas-
sifier is designed to recognize a given test image of
unknown class to one of the Z classes. A page number
mapping table is constructed during the classification
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Figure 3. A mapping from original sequence to clas-
sified images

the record the relation between original order and the
classified images. Figure 3 illustrates this mapping.

The classifier is the normalized “texture energy”
(TE): the standard deviation of pixel gray scale within
a 15 × 15 window size computed after convolution
with a texture tuned mask through task-aimed train-
ing. The method consists of first optimizing the mask
parameters on the two-dimensional linked training
samples to characterize the rotation and scale invariant
features of each texture by maximizing the inner-class
convergence and inter-class dispersion, then classify-
ing samples from different textures that have been ro-
tated by different angles and magnified with different
scale factors. The classification is based on a dis-
tance rule which measures the difference between the
global texture energy TE of the test image and the ref-
erence values in the 2D matrix of the training texture
database. The texture is classified to the category for
which such a distance is the minimum.

3 PCA Based Compression along Temporal
Dimension

After the classification of a sequence of images, PCA
is applied to each Ci. A three bit marker is added in
each image to record the page number. If there are
N images in Ci, M , M < N , PCA channels will be
employed. Let X = [X1X2 . . . XN ] be the N images
in Ci, where Xi is a K × 1 column vector and L is the
number of pixels in each image, then the mean vector
is defined by

X = E {X} (1)

and the covariance matrix is

C = E
{(

X − X
) · (X − X

)T
}

(2)
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Figure 4. A single-scale filter bank of FWT

Let λ = [λ1λ2 . . . λL] and A = [α1α2 . . . αL] be the
eigenvalues and eigenvectors of C respectively, then
the principal components are defined by

P = A · (X − X
)

(3)

M principle components (PCs) will be employed as
the representation of the image sequence and M is
computed by

M∑
i=1

λi

/
L∑

i=1

λi ≥ T (4)

where T is taken as 0.9 in our experiments.

4 Wavelet Based Compression along Spatial
Dimension

After the principle component analysis, M , M < N ,
PCA channels containing most of the information of
the original N images are generated. Then wavelet
transform is performed to each PCA channel for fur-
ther coding. Employing a pair of filters and downsam-
plers, wavelet coefficients c and approximation coef-
ficients a can be computed through the Fast Wavelet
Transform (FWT)[15]

cm,n =
∑

k

g2n−kam−1,k (5)

am,n =
∑

k

h2n−kam−1,k (6)

where g is a high pass filter and h is a low pass filter;
m and n are scaling parameter and shifting parameter
respectively; a0,n is the original signal.

Usually biorthogonal wavelet bases are employed
in image coding because they have linear phase
and perform exact reconstruction [5]. Biorthogonal
wavelet bases were introduced in [16]. There are two
pairs of filters: the pair h and g introduced above for
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Figure 5. Three level 2-D FWT decomposition

decomposition and another pair h̃ and g̃ for recon-
struction. The relations between these filters are

gn = (−1)n h̃−n+1 (7)

g̃n = (−1)n h−n+1 (8)

The so-called 9/7 [17] and 12/4 [18] biorthogonal
wavelets are the most popular choice of filters. Both
of them are employed in our experiments for a com-
parative study.

It is very easy to extend above FWT to the 2-D
case (image). For an image am,x,y, convolving its
rows with h and g and downsampling its columns, we
obtain two subimages. Then, convolving columns of
those two subimages with h and g and downsampling
their rows, four quarter-size output subimages am, c1

m,
c2
m, c3

m, are produced. Figure 4 illustrates this proce-
dure through one single-scale filter bank and this filter
bank can be iterated by putting the approximation out-
put to the input of another filter bank. Conventionally,
the four subimages are denoted as LL, LH, HL, and
HH respectively, where LL is the approximation coef-
ficients and others are the wavelet coefficients. Figure
5 illustrates subimages after three-level 2-D FWT de-
composition.

After n level wavelet decomposition, subimage
HHi, HLi, LHi and LLn are then taken as vec-
tors for Vector Quantization. Vector Quantization
is performed by mapping an input vector, x =
(x0, . . . , xk−1), to a reproduction vector, x̂ = q (x),
belonging to a codebook, Â = {yi; i = 1, . . . , N},
where q is a N -level K-dimensional quantizer that
is described by the codebook Â and the parti-

tion P
(
Â

)
= {Si; i = 1, . . . , N} where Si =

{x : q (x) = yi} is the mapping from input vectors to
the codebook [8].

LBG algorithm [9] is a well-known technique to
generate the quantizers. To produce the locally op-
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timal quantizer, we optimize the LBG algorithm by
employing classified training sequences that are cor-
responding to the training collections mentioned in
section 2. Corresponding to the mutliresolution im-
ages generated by FWT decomposition, there are mul-
tiresolution codebooks generated from multiresolu-
tion training sequences.

• (A) The LBG Algorithm:

– (1) Initialization:Given N = Number of lev-
els of the quantizer, a distortion threshold
0 ≤ ε ≤, an initial N -level codebook ,
Â0 = {yi; i = 1, . . . , n}and a training se-
quence X = {xj; j = 1, . . . , n}. Set m =
0 and D−1 = ∞.

– (2) Given Âm = {yi; i = 1, . . . , n}, find its

minimum distortion partition P
(
Âm

)
=

{Si; i = 1, . . . , N} of the training se-
quence: xj ∈ Si if d (xj, yi) ≤ d (xj , yl)
for all l. d is the Euclidean distance. Com-
pute the average distortion by

Dm = D
({

Âm,P
(
Âm

)})
=

n�

j=1
min

y∈�Am
d(xj ,y)

n

– (3) If (Dm−1 − Dm)/Dm ≤ ε, halt with

Âm and P
(
Âm

)
to describe the final quan-

tizer. Otherwise, continue.

– (4) Find the optimal codebook

x̂
(
P

(
Âm

))
= {x̂ (Si) ; i = 1, . . . , N},

which is the centroid of each Si. Set

Âm+1
Δ= x̂

(
P

(
Âm

))
. Replace m by

m + 1, and go to (2).

• (B) Choice of Â0:Choosing Â0 by splitting gives
good performance [7], which is briefly described
here:

– (1) Initialization: Set M = 1, and define
Â0 = x̂ (A), which is the centroid of the
training sequence.

– (2) Given the codebook Â0 (M) =
{yi, i = 1, . . . ,M}, split each yi into two
close vectors yi + σ and yi − σ where σ is
a fixed perturbation vector. The collection
Ã (M) = {yi + σ, yi − σ; i = 1, . . . ,M}
has 2M vectors. Replace M by 2M .

– (3) If M = N , halt with Â0 = Ã (M).
If not, run LBG algorithm for a M -level
quantizer on Ã (M) and then go to (2).

5 Experimental Results

Experiments are implemented using the images from
handouts in the Distance Learning database belonging
to Distance Learning School of Zhengzhou Univer-
sity. 37 handout sequences of different subjects are
employed. Each of those sequences contains 32-83
images. The performance of the proposed algorithm is
evaluated in terms of PSNR and the perceptual qual-
ities.

(a) original (b) MPEG-4 (c) PCA-Wavelet

(d) original (e) MPEG-4 (f) PCA-Wavelet

(g) original (h) MPEG-4 (i) PCA-Wavelet

Figure 6. Reconstructed images at 28 kbit/s

PSNR is defined by

PSNR = 10 lg
(

2552

MSE

)
(9)

where MSE is the mean squared error of the recon-
struction.

MSE =
1
N

N∑
i=1

(
fi − f̂i

)2
(10)

Figure 6 displays some reconstructed images
from different test sequenecs at 28 kbit/s. The av-
erage PSNR of the 37 test sequences is illustrated
in figure 7 with comparisons to MPEG-4. The per-
formance of our PCA-wavelet based scheme achieves
better performance than MPEG-4 at low and medium
bit-rate. Both 9/7 and 12/4 biorthogonal wavelets are
tested in this experiment. The performances of dif-
ferent wavelets are generally similar. The 9/7 wavelet
achieves a little better PSNR at low bit-rate and the
12/4 wavelet a little better at medium bit-rate.
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Figure 7. PSNR vs. Bit-rate

6 Conclusion

We proposed a new PCA-Wavelet based compression
scheme for Distance Learning images. Our coding
scheme includes the Principle Components Analysis
(PCA) in temporal domain and wavelet based com-
pression in spatial domain. A texture energy (TE)
based technique is used to classify the image sequence
so that the principle component analysis (PCA) is op-
timized to produce better representative PCA channels
for our handout images. Further, employing classified
training sequences generated based on the TE of the
handout images, the LBG algorithm is optimized to
produce locally optimal codebook. The experiments
results demonstrate that our algorithm achieves good
performance at low bit-rate.
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