
1

Visualization of Binary Component-Based Program Structure with
Component Functional Size

Hironori Washizaki† Satoru Takano‡ Yoshiaki Fukazawa‡

†Research Center for Testbeds and Prototyping,
National Institute of Informatics

Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo, 101-8430
Japan

‡Dept. Computer Science, School of Science and Engineering,
Waseda University

Ohkubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555
Japan

† washizaki@nii.ac.jp http://www.fuka.info.waseda.ac.jp/

Abstract: In this paper, we propose a program visualization system which does not make use of the source
code, but uses two techniques, reflection and byte-code analysis, to measure the functional size of each
software component and to determine the dependency relationships among components and helper classes.
These results are used to provide an accurate visualization of the overall structure of the component-based
program. Our system can be applied to programs built with JavaBeans components. As a result of comparative
evaluations, it is found that our system is useful for visualizing binary component-based program structure with
component functional size to support maintenance activities.

Key-Words: Program visualization, Component-based development, Program comprehension, Software reuse,
Object-oriented programming, JavaBeans

1 Introduction
Component-based development (CBD) [1,2,3] is an
approach allowing development of more-versatile,
large-scale software more quickly and effectively.
Often in CBD, components that have been
developed by a third party and delivered in binary
format (without access to the source code) are
reused to build new software quickly. These types
of components will be called binary components in
the remainder of this paper.

It is well known that much of the time spent
maintaining software is consumed in simply
understanding the software [4]. In order to
effectively maintain software that has been obtained
through CBD on an on-going basis, it is necessary to
provide the maintainer with an intuitive
understanding of the software as a collection of
components. This is usually done by expressing
various facets of the large amount of information
graphically, through visualization.

Two important aspects of software are its static
structure and its dynamic behavior. This paper will
deal mainly with the former, discussing
visualization of the static structure of component-
based program. With most of the existing systems
and techniques for visualizing software structure
(e.g. SEIV[4], Seesoft[5], ObjectOrrery[6], etc.),

analysis of the program source code is required, so
using them to visualize software that was created by
incorporating binary components is very difficult.

In this paper we propose a system which uses two
techniques, reflection and byte-code analysis, to
obtain the dependency relationships among
components (and helper classes) without using
source code, in programs composed of JavaBeans
[7] binary components. Our system then visually
displays a graphical representation of these
relationships. It also applies functional size
measurement values obtained using a new
component-size metric developed by us.

2 CBD and JavaBeans
Components are independent, interchangeable and
reusable units of software that provide a particular
function [2]. They are generally implemented in an
object-oriented programming language [8,9]. CBD
refers to the process of developing new software by
selecting a software architecture as a development
platform (the component architecture), and
combining reused and newly developed components
that are compatible with the standards of the
selected architecture.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp912-918)

2

In this paper we handle visualization of Java
programs built by combining JavaBeans
components [7]. JavaBeans is a component
architecture for developing and using local
components in the Java language. JavaBeans
components are called Beans, and are defined by a
single class in the Java programming language and
must satisfy the two conditions below.

 Condition 1: The class must have a public

constructor which requires no parameters.
 Condition 2: The class must implement the
java.io.Serializable interface.

As such, a Bean has the structural constructs of a

regular Java class: constructors, fields and methods.
As an example, the static structure of a typical Bean
is shown as a UML class diagram in Fig.1. In the
example, the Chart class is a Bean.

In addition to the above definitions, it is
recommended that Bean and related classes follow
the conventions described below, which make the
functions easier to be used by other Beans and
easier to use in development environments.

 Properties: Named attributes whose value

can be obtained and/or set externally are
called Properties. For classes which are
handled as Beans, properties are defined by
implementing a method which allows the
attribute value to be set externally, and
another which allows the attribute value to
be obtained externally. These are called the
property access methods. Property access
methods are usually implemented according
to specific naming conventions. If a class
has a method, public A getXyz(),
and/or a method, public void
setXyz(A a), it is considered to have a
property, xyz. For most of the properties of
a Bean, there is a 1-to-1 correspondence
between properties and fields of the Bean
class [10]. In Fig.1, the Chart class has
setTitle() and getTitle() methods
which set and get the value of the title field.
Thus, the Chart Bean has a title
property whose value can be set and obtained.

 Methods: Functions provided by the Bean
that can be called externally are called
methods. Methods are implemented as
externally callable (public) normal-Java
methods in the Bean class. The Chart
Bean in Fig.1 has a plot() method.

 Events: Events provide a mechanism for a
Bean to notify external entities of particular
occurrences internal to the Bean, when they
happen. An Event consists of the event
source, the event listener, and the event
object. The example in Fig.1 is a Bean with
an Updated event.

Fig.1: Example of a Bean and related classes

Moreover, it is recommended that all of the
classes and interfaces that a Bean requires be
packaged and delivered with the Bean in the same
JAR archive file. The Chart Bean in the example
in Fig.1 is distributed as a single JAR file which
also contains the Grid, Border and
classes/interfaces related to the Updated event.

For Beans supplied in binary format (Java byte-
code), the following information 1-3 can be
obtained from the Bean through the reflection (or
introspection) mechanism without analyzing the
source code. Moreover, the information in item 4
can be obtained from the Java byte-code by the byte
code analysis [11].

1. Information about properties, events, and

methods can be obtained through the
introspection mechanism [7]. This
information can be analyzed using the
naming conventions, or by using a
BeanInfo object containing meta-data if
the developer has provided one.

2. Information about the constructors, fields
and methods of the Bean class can be
obtained using the reflection mechanism.

3. Structural information from the archive file
which contains the Bean can also be obtained
without analyzing the source code (e.g.:
whether there are resource files such as icon

Grid Border

Chart
- title: String
+ Chart()
+ getTitle() : String
+ setTitle(String): void
+ plot(): void
+ addUpdatedListener(UpdatedListener): void
+ removeUpdatedListener(UpdatedListener): void

Chart
BeanInfo

<<java.beans>>
BeanInfo

Packaged in a single JAR file

<<java.io>>
Serializable

Updated
Listener

UpdatedEvent

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp912-918)

3

files, what other classes or interfaces the
Bean depends upon, etc.).

4. Information about how the Bean’s Java class
uses or is used by other Beans or helper
classes, how it generates instances of other
classes, or how instances of it are generated
by other Beans or classes, can be obtained by
analyzing the byte-code.

This available information in 1-4 is important for

determining the functional size of a Bean.

3 Program Visualization
The activity of visually displaying the structure or
behavior of the final text of a software program, for
the purpose of supporting software development is
called program visualization. Program visualization
can be categorized into four types according what is
being visualized (the program or the data handled by
the program), and the type of drawing technique
used (static or dynamic) [12]. Among these types,
this paper deals with a system for statically
visualizing the component-based program.

Seesoft [5] and ObjectOrrery [6] are examples of
the many existing types of static program
visualization systems for visualizing object-oriented
programs. For example, ObjectOrrery, for programs
written in the Smalltalk object-oriented
programming language, has a function which
gathers the reference relationships among groups of
classes and selects groups of them for display, and
another which displays the scope and effect of
particular changes to the class structure.

However, these conventional program
visualization systems all require analysis of the
source code of the program being visualized, so it
has been very difficult to apply them to binary
component-based programs built using components
provided in binary format. Furthermore, these
systems generally are not able to display particular
characteristics (e.g. functional size) of individual
components which make up the program within the
component architecture being used.

4 Binary Component-Based Program
Visualization
Programs created by combining helper classes and
binary components without source code are referred
to as binary component-based program. In order to
help programmers gain the understanding of the
software required to perform maintenance tasks
such as fixing bugs or adding extensions efficiently,

we propose a system which visually displays the
static structure of a Java program made up of Java
helper classes and JavaBeans components (Beans)
provided in byte-code format.

Our system displays the functional size of each
Bean, as well as the dependency relationships
between Beans and other classes by using the Java
reflection and JavaBeans introspection functions
and by analyzing the byte-code of the components.

4.1 System architecture

Fig.2 shows our system architecture. Below, we
show the data states in our system based on a
visualization reference model [13].

 Raw data: Collection of Java byte-code
 Data table: Class/component dependency

relationships and functional size of each
component derived from the byte-code.

 Visualization structure: Dependency
relationships and functional size information
arranged within a 3-D space.

 Displayed data: Dependency relationships
and functional size arranged on a 2-D surface
so they can be shown on the display of a
computing device.

Below, we show the operations in our system

based on the visualization reference model [13].

 Data transform: The data table is created
from the raw data by two parts: the
component analysis and the dependency
analysis. The former first determines
whether a Java class satisfies the JavaBeans
specifications, and if it is a Bean, its
functional size is determined using the
reflection mechanism. The latter uses the
Javassist byte-code analysis tool [11] to
analyze the Java byte-code, and obtains the
dependency relationships between classes.

 Visualization mapping: The classes and
components which comprise the raw data,
and the dependency relationships between
them are the visualization objects (units of
visualization) and are represented within a 3-
D coordinate space using “Jun for Java” [14],
a 3-D graphics/multi-media framework. The
visualization objects for the classes and
components each have their own features
(name, functional size, etc.).

 View transform: The 3-D coordinate data
obtained using the visual mapping is output
to the 2-D image using “Jun for Java”.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp912-918)

4

Java
Bytecodes Classes/components

Component
analysis

Component
analysis

Dependency
analysis

Dependency
analysis

Visualization mapping

View
transform

View
transform

Visualization
structure (3D�

Displayed
data (2D�

See/
understand

Develop
/ reuse

Developer

Visualization system

Fig.2: Overview of visualization system

4.2 Dependency analysis
The following dependency relationships between
classes are obtained through analysis of the byte-
code in the dependency analysis part.

 Inheritance relationships: When a Java class
is defined as a subclass of another class by
using the Java keyword extends, it is
called an inheritance relationship.

 Reference relationships: When a class uses
another class type or object, such as by using
an object as a value, or by accessing a
method or field of an object, it is called a
reference relationship.

 Instance generation relationship: When a
class or an object of the class internally
generates an object of another class (using
Java keyword new), it is called an instance
generation relationship.

4.3 Component analysis
As described in section 2, component analysis
consists of distinguishing between Java classes and
Beans, and if the class is a Bean, using the reflection
mechanism to determine the functional size of the
Bean. The functional size of a component gives an
indication of the amount of functionality provided
by the component. By visually indicating the
amount of functionality of each component that
makes up a component-based program, our system

can help give an intuitive understanding of the
overall functional size, as well as whether the break-
down and allocation of functionality within the
program is appropriate.

The number of methods, properties and events
made public by a component can be considered to
be related to the functional size of that component.

 Number of methods: The number of

methods a component has mainly reflects the
extent of the provided functionality of the
component that affects the component’s
internal state.

 Number of events: The number of events a
component has mainly reflects the extent of
the provided functionality of the component
that affects component’s external entities (i.e.
other components and classes).

 Number of properties: Generally, when a
method provided by a component is executed,
it uses the values in specific properties, and
places the results of this execution into
specific properties [10]. Also, the events
provided by the component are used to
initiate external actions and notify external
entities based on differing values in specific
properties. Thus, the number of properties a
component has reflects the input and output
related to functionality provided internally,
and the scope of the call-conditions for
functionality provided externally.

The component analysis part measures these three

values using the JavaBeans introspection function.
However, as described above, each of these values
reflects the functional size of the component from a
different perspective. So, by combining these
values, we define FOC(c), the Functional size Of a
Component, c, as a metric which comprehensively
reflects the functional size. In the definition of FOC,
we added one to each value before performing
multiplication in order to avoid the final value of
FOC become zero when one of these values is zero.

FOC(c)::= (NOM(c)+1) ·(NOE(c)+1) ·(NOP(c)+1)
where NOM(c), NOE(c), and NOP(c) represent the
number of methods, events and properties of c.

The value of this FOC metric of component

functional size cannot be interpreted as indicating
the component is better (or worse), the larger the
value. For binary components whose internals are
hidden, as the functional size increases, the
component’s applicability for reuse increases, but
the effort required understanding the functionality

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp912-918)

5

also increases, so it may also indicate additional
problems in terms of maintenance.

This leads to the question of what is an
appropriate value for the functional size of a binary
component used in building component-based
program. To compute a reference value for the
proposed FOC metric, we used evaluation data from
the contributed components made available on
JARS.COM [15]. On JARS.COM, a large number
of Beans in various categories are judged (by
development experts) and given an 8-level
evaluation with respect to expressiveness,
functionality and originality. This 8-level
evaluation is normalized to fit into the range [0, 1]
(1 being best), and is called the JARS evaluation.
We used all 118 Beans on JARS.COM which had
been assigned a JARS evaluation in 2005 as an
evaluation sample. Because Beans published on
JARS.COM are used by a large number of people, it
is reasonable to consider a high JARS evaluation as
indication that the component has been reused a lot,
and that the component quality, including its
functional size, is good.

To determine a reference value for FOC, first the
components were divided into the A group of 95
components with a JARS value of one, and the B
group of 23 components with a JARS value of less
than one. The average component FOC value was
then computed for each group (shown in Table.1).

We adopted the A group average value shown in
Table.1 as an appropriate upper-limit value for
component functional size. Components whose
measured FOC value is below this upper limit are
considered to be of appropriate functional size.

Table.1: Average FOC values for both groups by
category (N.b: number of beans, F.A/F.B: average
FOC value of A/B group)

Category N.b F.A F.B
Programming 113 204,717 2,771,720
Utilities 2 278,628 80
Game 2 - 200,950
Science 1 - 682,080
Average (total) (118) 205,495 2,336,815

4.4 Visualization objects
In our system, the visual mapping displays elements
for each of the visualization objects as follows.

 Components are visualized as boxes which
reflect the FOC value of the component. The
number of methods, events and properties
are related to the width, depth and height of
the box respectively, so that the volume of

the box is a visual representation of the FOC,
the component functional size. Then, the
FOC value is evaluated against the FOC
reference value to determine whether the
component functional size is appropriate,
and the object is displayed using a color that
reflects this. If the FOC of a component is
less than the FOC reference value, the box is
displayed in blue, and if it exceeds the
standard value the box is displayed in red.

 Java classes which are not components are
displayed as light-green spheres.

 Dependency relationships are displayed as
straight lines joining the visualization objects
of the classes or components in the
relationship.

As an example application of our system, we input

some binary component software implemented
using the “FukaBeans” JavaBeans binary
component library [16]. Fig. 3 shows what this
visualization looks like. As a result of analysis and
visualization using our system, component and class
characteristics as well as the how they are related
can be visualized based on the dependency analysis
and component functional size measurements. In
Fig.3, the FukaCalendar component and the
FukaTextBean component are differentiated
from other classes, and displayed as blue boxes that
reflect their functional sizes. In contrast, the
FukaCalendarExample component is displayed
as large red box in Fig.3. From this observation, it is
found that our system help users to easily
distinguish components with their functional sizes.

Component with
large functionality
Component with
large functionality

Bean with small
functionality
Bean with small
functionality
Component with
small functionality
Component with
small functionality

Other classOther class

Fig.3: Example of visualization using our system

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp912-918)

6

5 Comparative Evaluation
A comparison of the information that can be
visualized by our system and two other systems,
Seesoft and ObjectOrrery, (representing
conventional static program visualization systems)
is shown in Table.2. The table shows that the
conventional visualization systems do not
distinguish between classes and components that
make up the program. They do not allow the user to
visually differentiate them, and provide no support
for an intuitive understanding of the internal
structure. Further, analysis of the source code is a
prerequisite for using these existing systems, so they
cannot handle parts of binary component based
program for which the source code is not available.

In contrast, our system differentiates between
classes and components when displaying them, and
displays the functional size of components visually.
This supports the user in gaining an intuitive
understanding of the internal structure of binary
component based program.

Table.2: Comparison of visualization system
features (Y: supported by visualization system, n:
not supported)

Visualized data Our
system

Conventional
system

Class Y Y
Component Y n
Functional size Y n
Inheritance relation Y Y
Reference relation Y Y
Instantiation relation Y Y

6 Conclusion
In this paper we have proposed a new system which
analyzes and visually displays the structure of
binary component-based program which includes
JavaBeans components in binary form using
reflection, introspection and byte-code analysis.
The proposed system can facilitate an intuitive
understanding of binary component-based program
more effectively than existing visualization systems
by clearly showing the functional size of
components, by differentiating between classes and
components, and by showing the dependency
relationships between classes and components.

As a future work, we will extend our system to
cover dynamic behavior of the target component-
based program. Also, we plan to demonstrate clearly
and conclusively the effectiveness of the system by
using it in experiments to visualize and understand
large-scale binary component-based program.

References:
[1] J.Q. Ning: A Component-Based Software

Developement Model, 20th Annual
International Computer Software and
Applications Conference, pp.389-394, 1996.

[2] C. Szyperski: Component Software: Beyond
Object-Oriented Programming, Addison-
Wesley, 1999.

[3] C. Atkinson: Component-based Product Line
Engineering with UML, Addison-Wesley,
2001.

[4] H. Suzuki, et al.: Visualization of Program
Behavior with Graphical Representation of
Structure, 6th Interactive Systems and Software
Workshop, pp. 99-104, 1998.

[5] S. Eick, J. Stefen, and E. Summer: Seesoft: A
Tool for Visualizing Line Oriented Software
Statistics, IEEE Transactions on Software
Engineering, Vol.18, No.11, pp.957-968, 1992.

[6] N. Nishikawa: ObjectOrrery: 3d Visualization
of Class Library Structure, 3rd Workshop on
Software Visualization, 1999.

[7] G. Hamilton: JavaBeans 1.01 Specification,
Sun Microsystems, 1997.

[8] J. Hopkins: Component Primer,
Communications of the ACM, Vol.43, No.10,
pp.27-30, 2000.

[9] H. Washizaki and Y. Fukazawa: A Technique
for Automatic Component Extraction from
Object-Oriented Programs by Refactoring,
Science of Computer Programming, Vol.56,
No.1-2, pp.99-116, 2005.

[10] H. Washizaki, H. Yamamoto and Y. Fukazawa:
A Metrics Suite for Measuring Reusability of
Software Components, 9th IEEE International
Symposium on Software Metrics, pp.211-223,
2003.

[11] S. Chiba and M. Nishizawa: An Easy-to-Use
Toolkit for Efficient Java Byte-code
Translators, 2nd International Conference on
Generative Programming and Component
Engineering, pp.364-376, 2003.

[12] B.A. Myers: Visual Programming,
Programming by Example and Program
Visualization, ACM Conference on Human
Factors in Computing System, pp.59-66, 1986.

[13] S.K. Card, et al.: Readings in Information
Visualization, Morgan Kaufmann, 1999.

[14] Software Research Associates, Inc.: Jun for
Java, http://www.sra.co.jp/people
/nisinaka/Jun4Java/

[15] Jupitermedia Corporation: JARS.COM,
http://www.jars.com/

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp912-918)

7

[16] Waseda University, Fukazawa Laboratory:
FukaBeans, http://www.fuka.info.
waseda.ac.jp/Project/CBSE/

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp912-918)

