
Componentwise Program Construction:
The Equivalent Transformation Computation Model

versus the Logic Programming Model

KIYOSHI AKAMA
Information Initiative Center

Hokkaido University
Sapporo, Hokkaido, 060-0811

JAPAN

EKAWIT NANTAJEEWARAWAT
Sirindhorn Intl. Inst. of Tech.

Thammasat University
Rangsit, Pathumthani, 12121

THAILAND

HIDEKATSU KOIKE
Faculty of Social Information
Sapporo Gakuin University
Ebetsu, Hokkaido, 069-8555

JAPAN

Abstract: In the equivalent transformation (ET) computation model, a program is a set of procedural rewriting
rules for answer-preserving transformation of problems with respect to given background knowledge. In this
paper, we discuss an approach to program construction by creating and accumulating individually correct and effi-
cient program components one by one, referred to as componentwise program construction. Basic requirements for
componentwise program construction are identified, based on which we show that the ET model possesses several
desirable properties for this program construction approach, in particular, compared with the logic programming
model. In addition, we compare the expressive power of program components in the ET model and that of compo-
nents in the logic programming model by viewing computation in the latter model as problem transformation using
only one specific class of rewriting rules, i.e., single-head general unfolding-based rules, and then demonstrating
that a larger class of rules is needed for effective computation.

Key–Words:Componentwise program construction, Equivalent transformation, Rule-based computation, Program
synthesis, Rewriting rules, Computation paradigm

1 Introduction

Equivalent transformation (ET) is one of the most fun-
damental principles of computation, and it provides
a simple and general basis for verification of com-
putation correctness. Computation by ET was ini-
tially implemented in experimental natural language
understanding systems at Hokkaido University during
1990–1992 [1], and the idea was further developed
into a new computation model, called theET model
[2, 3]. A program in this model is a set of prioritized
rewriting rules for answer-preserving transformation
of problems, and a problem solving process consists
in successive rule application. Besides extensive use
in the domain of first-order terms, the model has been
applied in several data domains, including RDF and
XML (e.g. in [5]).

As opposed to declarative computation paradigms
such as logic programming (LP) and functional pro-
gramming (FP), programs are clearly separated from
specifications in the ET model. A specification de-
fines a set of problems of interest and provides back-
ground knowledge for declaratively determining the
answer sets of the problems. From a specification a
program consisting of rewriting rules is constructed.

When applied in the domain of first-order terms and
first-order atoms, questions often arise as to whether
the ET model offers advantages over the LP model.

Advantages of the ET model are best seen from
the viewpoint of program synthesis. In this pa-
per, comparisons between the ET model and the LP
model as regards componentwise program construc-
tion is discussed. Such a program construction ap-
proach demands a high level of program component
independency—it requires that the correctness and the
efficiency of a program component can be verified
and evaluated, respectively, independently of other
components—and, moreover, capabilities of a par-
tial program to provide a meaningful clue to creation
of new components towards completing the program.
Limitations of the LP model in regard to these require-
ments are identified, and how the ET model complies
with the requirements is described. Expressive power
of program components in the two models are com-
pared by viewing computation in the LP model as
problem transformation using only one specific class
of rewriting rules in the ET model, and then showing
that a larger class of rules is necessary for enhance-
ment of problem solving ability.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp141-146)

To start with, basic requirements for component-
wise program construction are described in Section 2.
Sections 3 and 4 analyze the two computation models
with respect to these requirements. Section 5 illus-
trates the need for a wide variety of program compo-
nents and reveals limitations of program components
in the LP model as to the expressiveness aspect.

2 Basic Requirements

A programprg is partially correct with respect to a
specificationS iff for each problemprb defined byS,
prg yields the correct answer set ofprb provided that
it terminates when executingprb. It is correct with
respect toS iff it is partially correct with respect to
S and it terminates when executing each problem de-
fined byS. Componentwise program construction is
a process of generating a correct and sufficiently effi-
cient program by creating and accumulating individu-
ally correct and efficient program components one by
one on demand. This program construction approach
imposes the following requirements:

(Rq1) The correctness (respectively, the efficiency)
of a program component can be defined (re-
spectively, measured).

(Rq2) The correctness (respectively, the efficiency)
of a component can be verified (respectively,
evaluated) independently of other compo-
nents.

(Rq3) Accumulation of individually correct (re-
spectively, individually efficient) components
yields a partially correct (respectively, an effi-
cient) program.

(Rq4) There is a wide choice of components that may
be added towards completing a program.

(Rq5) Appropriate components to be added towards
completing a program can be selected and cre-
ated at low cost.

The first three requirements enable decomposition of
program partial correctness and program efficiency
into component correctness and component efficiency,
respectively. The fourth requirement is concerned
with the possibility of obtaining high-quality pro-
grams, especially in regard to program efficiency and
program termination. It is complemented by the fifth
requirement, which is concerned with the cost of
a component accumulation process. These require-
ments altogether form a basis for analysis of the com-
ponentwise program construction in the LP model and
in the ET model in the following two sections.

let D = ∅ andG′ = G
let Pred be the set of all predicates occurring inG
repeat
(a) select and remove a predicatep from Pred
(b) G′′ := G′|Pred
(c) find a predicate definitionDp of p such that

(i) G′ =M(Dp ∪ unit(G′′))
(ii) Dp is efficient

(d) D := D ∪Dp

(e) G′ := G′′

until Pred = ∅

Figure 1: Componentwise program construction in
the LP model

Set Definition

G Gpal ∪Grv ∪Gap ∪Gpalpal

Gpal {pal(t) | t is a ground palindrome list}
{rv(t1, t2) | t1, t2 are ground lists, andt1 is

Grv the reverse oft2}
{ap(t1, t2, t3) | t1, t2, t3 are ground lists, and

Gap appendingt2 to t1 yieldst3}
{palpal(t) | t is a ground list, andpal([1|t])

Gpalpal andpal([2|t]) are palindromes}

Table 1: Background knowledge

3 A Solution in the LP Model

3.1 Componentwise Program Construction
In the LP paradigm, a set of definite clauses is re-
garded as a program, and a specification is a pair
〈G, Q〉, whereG is a set of all true ground atoms
in the problem domain, which is assumed in this pa-
per to be known beforehand and is regarded as back-
ground knowledge, andQ is a set of atoms, each of
which represents a query of interest. A program is
executed using some proof engine, e.g. a Prolog-like
SLD-resolution-based inference engine.

For any atoma, let rep(a) denote the set of all
ground instances ofa. Given a setQ of atoms, let
rep(Q) =

⋃
{rep(q) | q ∈ Q}. Given a setD of def-

inite clauses, letM(D) denote the minimal model of
D. A program construction problem in the LP model
can be formalized by:

Given a specification〈G, Q〉, find a setD of defi-
nite clauses such thatM(D) ⊆ G, rep(Q)∩G ⊆
M(D), andD is efficient with respect toQ.

Predicate definitions, each of which is a set of
definite clauses with the same head predicate, are
often regarded as program components. Following
the componentwise program construction approach, a
logic program is constructed from a given specifica-
tion 〈G, Q〉 by using the algorithm in Fig. 1. To illus-

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp141-146)

C1: palpal(X)← pal([1|X]), pal([2|X])
C2: pal(X)← rv(X, X)
C3: rv([], [])←
C4: rv([A|X], Y)← rv(X, R), ap(R, [A], Y)
C5: ap([], X,X)←
C6: ap([A|X], Y, [A|Z])← ap(X, Y, Z)

Figure 2: A set of definite clauses constructed from
the background knowledge in Table 1

trate, suppose that the background knowledge repre-
sented as the setG of true ground atoms defined in Ta-
ble 1 is given, wherepal, rv andap stand for “palin-
drome,” “reverse” and “append,” respectively. The
predicatepalpal in the table has a special intended
meaning, i.e., for any termt, palpal(t) is true iff both
[1|t] and [2|t] are ground palindrome lists. The defi-
nite clauses in Fig. 2 are constructed from this back-
ground knowledge using the algorithm in Fig. 1.

3.2 Analysis
Taking predicate definitions as program components,
we now analyze componentwise program construc-
tion in the LP model. Referring to Fig. 1, Condition
(i) at Step (c) provides the notion of correctness of
a predicate definitionDp with respect toG′ andG′′.
This notion is independent of any other predicate def-
inition existing inD. Moreover, a set of individually
correct predicate definitions is always partially correct
when it is regarded as a logic program. Requirements
(Rq1), (Rq2), and (Rq3) are fully fulfilled in regard to
the correctness aspect.

As to the efficiency aspect, when a node in an
SLD-tree is expanded using one predicate definition,
each clause in the definition possibly yields one child
node, and, therefore, the number of resulting child
nodes is bounded above by the number of clauses in
the definition. As such, the number of clauses in the
definition serves as a measure of its efficiency—the
smaller the number is, the more efficient the definition
tends to be (when it is regarded as a program compo-
nent). The number of clauses, however, provides only
a rough measure—the exact number of resulting child
nodes may be far less the the number of clauses in the
definition since the unification of a goal atom and the
heads of some clauses in the definition may fail.

In general, as a predicate definition contains fewer
definite clauses, the number of clauses in the defini-
tion provides a more accurate efficiency measure (i.e.,
a lower upper bound for the exact number of child
nodes resulting from node expansion). Since a logic
program typically involves several predicate defini-
tions with multiple definite clauses, approximation of
program efficiency based on the number of clauses in

Correctness Efficiency
Model

Rq1 Rq2 Rq3 Rq1 Rq2 Rq3
Rq4 Rq5

LP } } } M M M × M

ET } } } ◦ ◦ ◦ } ◦

}–“very good”; ◦–“good”; M–“poor”; ×–“very poor”

Table 2: Comparisons between the LP model and the
ET model

predicate definitions tends to be inaccurate. Require-
ments (Rq1), (Rq2), and (Rq3) are thus only poorly
satisfied in regard to the efficiency aspect.

As will be discussed in Section 5, from the view-
point of computation, predicate definitions are re-
garded as components of only one specific kind in the
ET model, i.e., single-head general unfolding-based
rules, and Requirement (Rq4) is not satisfied accord-
ingly. (It will also be shown in Section 5 that employ-
ment of such a restricted class of components alone
makes it impossible to construct correct logic pro-
grams for dealing with some class of queries.) As to
Requirement (Rq5), although any arbitrary predicate
occurring in a given background knowledge can be
selected at Step (a) of Fig. 1, construction of a predi-
cate definition often involves creation of a number of
definite clauses and the overall construction cost can
be considerable. The first row of Table 2 concludes
this analysis.

4 A Solution in the ET Model

4.1 Computation by ET: An Introductory
Example

Assume again as background knowledge the set of
true ground atoms defined by Table 1. Consider the
problem “find all ground termst such thatpalpal(t)
is true.” This problem is represented in the ET model
as a set consisting of a single definite clause

ans(X)← palpal(X),

where ans stands for “answer,” and this definite
clause is intended to mean “X is an answer if
palpal(X) is true.” The rewriting rules in Fig. 3 are
devised for solving this problem. Table 3 illustrates a
sequence of problem transformation steps by succes-
sive application of these rules, where atoms to which
the rules are applied are underlined and the rule ap-
plied in each step is given in the last column. The
transformation sequence changes the initial problem
into the singleton set{ans([])←}, which means “the
empty list is an answer (unconditionally) to the prob-
lem and there exists no other answer.” The correct-
ness of this computation can be verified by proving

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp141-146)

rpalpal: palpal(∗x)⇒ pal([1|∗x]), pal([2|∗x]).

rpal: pal(∗x)⇒ rv(∗x, ∗x).

rrv1 : rv([∗a|∗x], ∗y)⇒ rv(∗x, ∗v), ap(∗v, [∗a], ∗y).

rrv2 : rv(∗x, ∗y), rv(∗x, ∗z)⇒ {=(∗y, ∗z)}, rv(∗x, ∗y).

rap1 : ap(∗x, ∗y, [∗a|∗z])
⇒ {=(∗x, []),=(∗y, [∗a|∗z])};
⇒ {=(∗x, [∗a|∗v])}, ap(∗v, ∗y, ∗z).

rrv3 : rv(∗x, [∗a|∗y])
⇒ {=(∗x, [∗u|∗v])},

rv(∗v, ∗w), ap(∗w, [∗u], [∗a|∗y]).

rap2 : ap(∗x, [∗a], [∗b, ∗c|∗y])
⇒ {=(∗x, [∗b|∗v])}, ap(∗v, [∗a], [∗c|∗y]).

rap3 : ap(∗x, [∗a], [∗b])⇒ {=(∗x, []),=(∗a, ∗b)}.
rrv4 : rv([], ∗x)⇒ {=(∗x, [])}.

Figure 3: Examples of rewriting rules

that each rule in Fig. 3 is an answer-preserving rule
with respect to the background knowledge in Table 1.

4.2 Componentwise Program Construction
In the ET model, a problem is represented as a set
of definite clauses. To find its answer set, a given
problem is successively transformed by using rewrit-
ing rules into a simpler but equivalent problem from
which the answer set can be readily obtained. A pro-
gram in this model is a set of prioritized rewriting
rules, and a specification is a pair〈G, Q〉, whereG
is a set of all true ground atoms in the problem do-
main, i.e., background knowledge, andQ is a set of
problems of interest. It is required that the head pred-
icate of each clause in a problem inQ does not occur
in G. The answer set of a problemprb with respect to
a specification〈G, Q〉 is defined as the set

{a | (a← b1, . . . , bn) is a ground instance of some
definite clause inprb and{b1, . . . , bn} ⊆ G},

which is referred to asTprb(G).1

In order to assure correct computation re-
sults, only answer-preserving rewriting rules—correct
rewriting rules—are used. A rewriting rule is said to
becorrectwith respect to a setG of ground atoms iff
for any problemsprb andprb′, if the rule transforms
prb into prb′, thenTprb(G) = Tprb′(G). Obviously,
the correctness of one rewriting rule does not depend
on any other rewriting rule, and can be checked indi-
vidually. Requirements (Rq1) and (Rq2) are thus ful-
filled as to the correctness aspect. A correct rewriting

1Traditionally,Tprb is referred to as the one-step consequence
operator determined byprb (see, e.g., [4]).

Problem Rule

1 {ans(X)← palpal(X)} rpalpal

2 {ans(X)← pal([1|X]), pal([2|X])} rpal

3 {ans(X)← rv([1|X], [1|X]), pal([2|X])} rpal

4 {ans(X)← rv([1|X], [1|X]), rrv1

rv([2|X], [2|X])}
5 {ans(X)← rv(X, A1), ap(A1, [1], [1|X]), rrv1

rv([2|X], [2|X])}
6 {ans(X)← rv(X, A1), ap(A1, [1], [1|X]), rrv2

rv(X, A2), ap(A2, [2], [2|X])}
7 {ans(X)← rv(X, A1), ap(A1, [1], [1|X]), rap1

ap(A1, [2], [2|X])}
8 {ans([])← rv([], []), ap([], [2], [2]), rrv3

ans(X)← rv(X, [1|A3]), ap(A3, [1], X),
ap([1|A3], [2], [2|X])}

9 {ans([])← rv([], []), ap([], [2], [2]), rap2

ans([A4|A5])← rv(A5, A6),
ap(A6, [A4], [1|A3]),
ap(A3, [1], [A4|A5]),
ap([1|A3], [2], [2, A4|A5])}

10 {ans([])← rv([], []), ap([], [2], [2])} rap3

11 {ans([])← rv([], [])} rrv4

12 {ans([])←} –

Table 3: Transformation of problems

rule with respect toG is called anET rulewith respect
to G.

A program construction problem in this model is
formalized as follows:

Given a specification〈G, Q〉, find a setP of pri-
oritized ET rules such thatP can compute the an-
swer set of each problem inQ successfully andP
is efficient with respect toQ.

An algorithm for componentwise program con-
struction in the ET model is shown in Fig. 4.

4.3 Analysis
ET rules are program components in the ET model.
How ET rules fulfill Requirements (Rq1) and (Rq2)
in regard to the correctness aspect has been discussed
in Subsection 4.2. Since a set of unit clauses obtained
from a sequence of problem transformation steps us-
ing ET rules always yields a correct answer set, accu-
mulation of ET rules always results in a partially cor-
rect program. Requirement (Rq3) as to the correctness
side is also fully satisfied.

As to the efficiency side, a rule with fewer bod-
ies is considered as a more efficient program com-
ponent inasmuch as it narrows down a search space.
Obviously, the number of rule bodies is an individual
property of a rule. In the LP model, a program often

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp141-146)

let P = ∅
repeat
1. run the programP under certain control of execution
2. if some obtained final clause is not a unit clause

begin
(a) select one or more atoms in the body of a non-unit

final clause
(b) determine a general pattern of the selected atoms
(c) generate an ET rule for transforming atoms that

conform to the obtained pattern
(d) assign a priority level to the obtained rule
(e) add the obtained rule toP
end

until all obtained final clauses are unit clauses

Figure 4: Componentwise program construction in
the ET model

contains many definite clauses and thus yields many
branches of computation, some of which may be cut
off by further computation; accordingly, an efficient
measure based on the number of clauses is rather inac-
curate. In the ET model, by contrast, when specialized
ET rules are created, elimination of failure branches
can be taken into account based on the expressive
power of the rules. Resulting specialized rules there-
fore have fewer bodies compared with the general
unfolding-based rules for their respective predicates.
Since many failure branches can be determined and
eliminated beforehand during a rule construction pro-
cess, the efficiency measure based on the number of
rule bodies is more accurate.

Based on the fundamental structure of the ET
model, a very large class of rules can be employed—
any rule whose application always results in answer-
preserving transformation with respect to given back-
ground knowledge can serve as an ET rule. An op-
eration of an ET rule can also be decomposed into
a number of simpler operations that are realized by
finer-grained ET rules. A very large choice of ET rules
is available, satisfying Requirement (Rq4).

As to Requirement (Rq5), an incomplete program
in this model can always be executed, and a set of defi-
nite clauses that preserves the answer set of an initially
given problem is always obtained. The body atoms
of non-unit clauses occurring in such an obtained set
always provide a clue to creation of new ET rules—
there are finitely many such body atoms and heuristics
can be used for selection of appropriate atoms. In re-
gard to the construction cost aspect, the possibility of
decomposing a component into finer-grained compo-
nents enables construction of each individual compo-
nent at low cost. The second row of Table 2 sums up
this analysis.

5 Necessity for a Large Variety of
Rewriting Rules

Referring to Fig. 3, a classification of rules will be in-
troduced. The need for a large variety of rule classes
will be explained by pointing out that severe restric-
tion on the choice of program components in the LP
model is the root cause of the failure of logic programs
in finding the answer set of the query illustrated in
Subsection 4.1.

The rulerrv2 in Fig. 3 makes replacement of two
atoms simultaneously (see, e.g., its application to the
sixth problem in Table 3), and is called amulti-head
rule. Every other rule in the figure replaces a single
atom at a time, and is called asingle-head rule. Each
single-head rule in the figure operates as an unfold-
ing rule using some definite clauses, and is called an
unfolding-based rule. Note that the multi-head rule
rrv2 is devised based on the functionality of the “re-
verse” relation, and its operation is completely dif-
ferent from unfolding. The rulesrpalpal andrpal are
applicable to anypalpal-atom andpal-atom, respec-
tively, containing any arbitrary term, and are called
general rules. All other rules in the figure are appli-
cable to atoms having certain specific patterns, and
are calledspecialized rules. Employment of special-
ized rules allowscontent-based controlof computa-
tion [3]—an appropriate transformation step can be
decided based on the run-time contents of clauses oc-
curring in a computation state.

When computation by SLD resolution is viewed
in the ET framework, expansion of a node (genera-
tion of its children) in a search tree for finding SLD-
refutations corresponds to an unfolding transforma-
tion step. Accordingly, computation in logic program-
ming can be seen as computation using only one spe-
cific class of rewriting rules, i.e., single-head general
unfolding-based rules. By employment of such a re-
stricted class of rules alone, it is often difficult to
achieve effective computation control, in particular,
for preventing infinite computation or for improving
computation efficiency.

As an example, consider a logic program consist-
ing of the definite clauses in Fig. 2, which is con-
structed from the setG of true ground atoms in Ta-
ble 1, and the query “find all ground termst such
that palpal(t) is true” illustrated in Subsection 4.1,
which is represented in LP as the single goal atom
palpal(X). When executing this query, this logic pro-
gram enters infinite computation after givingX = [],
i.e., it fails to infer that the empty list is the “only”
possible ground instance ofX that satisfies the query,
and thus, does not yield the correct answer set. In-
deed, as will shown in this section, any logic program
for checking palindromes fails to terminate when ex-

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp141-146)

ecuting this query.
This difficulty is overcome in the ET model by

content-based control of computation and the possi-
bility of employing several types of rewriting rules,
including specialized rules and multi-head rules. To
illustrate, attention will now be drawn to the role of
the multi-head rulerrv2 in successful termination of
the transformation sequence in Table 3. First, con-
sider the two atomspal([1|X]) andpal([2|X]) in the
second problem in the table, and the case whenX is
instantiated into a nonempty ground list, saylX . By
the definition ofGpal in Table 1, the firstpal-atom re-
stricts the last element oflX to 1, whereas the second
one restricts it to2. This contradiction proves nonex-
istence of any answer other thanX = []. In terms
of computation, finding this contradiction involves ex-
change of information about the restrictions onlX be-
tween descendants of the firstpal-atom and those of
the secondpal-atom in a computation process.

Now consider the transformation step using the
multi-head rulerrv2 in Table 3. Prior to this trans-
formation step,X is the only information connection
between the two groups of descendants. Via this con-
nection, however, the constraint on the last element of
lX cannot be exchanged in a finite form. For example,
passing the restriction “the last element oflX must be
1” throughX to the descendants of thepal([2|X]) en-
tails passing infinitely many patterns such asX = [1],
X = [v1, 1], X = [v1, v2, 1], X = [v1, v2, v3, 1], and
so forth, where thevi are newly introduced variables.
With this information connection alone, a contradic-
tion must be found for each such pattern, one at a time,
leading to infinite computation.

The multi-head rulerrv2 provides a simple rem-
edy. It creates an additional information connection,
i.e., A1, through which the constraint on the last el-
ement oflX can be passed toap(A1, [2], [2|X]) as
a single finite pattern, i.e.,A1 = [1|v], wherev is
some new variable. Consequently, the all-embracing
contradiction can be found using a finite number of
transformation steps. Such an additional informa-
tion connection (common variable) cannot be cre-
ated by single-head rules. Since computation in logic
programming corresponds to computation using only
single-head general unfolding-based rules, any logic
program for checking palindromes has no information
connection other thanX when executing the query
← pal([1|X]), pal([2|X]), and therefore fails to ter-
minate.

6 Concluding Remarks

Theoretically, program synthesis can be viewed as a
search for a sufficiently efficient program in a cer-

tain space of correct programs with respect to a given
specification. The chance that such a program can be
found increases as the program space is larger. Clear-
cut separation between specifications and programs
in the ET model opens up the possibility of extend-
ing a correct-program space. A specification in this
model provides background knowledge for declara-
tively defining the answers to problems, whereas a
program consists of procedural rewriting rules for
computing the answers by problem transformation.
A very large class of rules can be employed—any
rule whose application always results in answer-pre-
serving transformation with respect to given back-
ground knowledge can serve as an ET rule. As a re-
sult, various classes of rules, with varying expressive
power, can be introduced. For example, in the Equiv-
alent Transformation Interpreter (ETI) system2 devel-
oped at Hokkaido University, rules with guard con-
ditions (possibly involving extra-logical predicates),
rules with execution parts, and multi-head rules are
provided.

The algorithm for componentwise program con-
struction discussed in Section 4 provides a basis for
rule generation in the second phase. Based on this
framework, a program synthesis system has been im-
plemented and used for constructing many nontrivial
programs.

References:

[1] K. Akama, Y. Nomura, and E. Miyamoto, Se-
mantic Interpretation of Natural Language De-
scriptions by Program Transformation,Com-
puter Software12, 1995, pp. 45–62.

[2] K. Akama, Y. Shigeta, and E. Miyamoto, Solv-
ing Logical Problems by Equivalent Transform-
ation—A Theoretical Foundation,Journal of the
Japanese Society for Artificial Intelligence13,
1998, pp. 928–935.

[3] K. Akama and E. Nantajeewarawat, Formaliza-
tion of the Equivalent Transformation Compu-
tation Models,Journal of Advanced Computa-
tional Intelligence and Intelligent Informatics
10, 2006. (In press; to appear in May 2006.)

[4] J. W. Lloyd, Foundations of Logic Program-
ming, Springer-Verlag, 1987.

[5] V. Wuwongse et al., A Data Model for XML
Databases,Journal of Intelligent Information
Systems20, 2003, pp. 63–80.

2ETI is an interpreter system that supports ET-based problem
solving. It is available at http://assam.cims.hokudai.ac.jp/etpro.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp141-146)

