
Design of High-Speed Data Buffer Based on FPGA  

for Gigabit-Rate Exchange Devices 
 

Wang Jie 
Department of Computer Science and Technology in Harbin Institute of Technology 

China 
Ji Zhen-zhou 

Department of Computer Science and Technology in Harbin Institute of Technology 
China 

Hu Ming-zeng 
Department of Computer Science and Technology in Harbin Institute of Technology 

China 
 
Abstract: With the increase of Internet bandwidth and the development of Internet applications, gigabit 
exchange devices are used widely. The reasonable design of high-speed data buffer is a key to break 
throughput rate necklace. We provide a new design of multi-level buffer structure based on Field 
Programmable Gates Array (FPGA). Parallel Schedule algorithm increases packets transmission speed. By 
improving pipeline the structure can be applied for ten-gigabit-rate environments. 
 
Keywords:   FPGA; Data Buffer; Multi-level buffer; Parallel Schedule

1 Introduction 
The bandwidth of high-performance network 

interfaces has often exceeded the capabilities of 
workstations to process network packets[1]. The 
throughout rate is one of the primary bottlenecks 
for high-speed network exchange devices. 

Content analysis of packets transmitting is 
emphasized more and more. If more information is 
needed, packets have to be stored. So a good 
design of high-speed data buffer is very important 
for high-speed network devices, such as gigabit 
routers, gigabit switches and so on, to reach 
approximate linear transmission with mirror delay. 
 Private hardware logic can reduce CPU 
loading greatly, and now is used in many 
applications especially for huge date flow process. 
We present a high-performance structure for 

high-speed data buffer based on FPGA with 
external RAMs. 
 

2 Buffer Implementation Strategy 
According the difference of RAMs used for 

data buffer, there are three common 
implementation ways: on-chip buffer, off-chip 
buffer, and union buffer. 
 
2.1 On-Chip Buffer 

With the development of ASIC techniques, 
more and more high-speed memory units are 
integrated in a complex chip, such as Block RAMs 
in FPGA. In some direct-transmit systems, only 
the header of the packet should be buffered, so 
small RAMs on-chip is enough. 

But to most advanced exchange device, 

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp1016-1019)



store-transmit is still necessary for deep level filter. 
So now RAMs on-chip are still too small to 
complicated designs. On-chip buffer is used in 
relatively simple modules. 
 
2.2 Off-Chip Buffer 

Off-chip buffer means packets are stored in 
SRAMs(such as ZBT RAMs) or DRAMs(DDR) 
connected with the main chip. This method has 
been widely used in many traditional applications. 

Obviously, memory accesses trouble the 
transmission speed. Memory controller logic can 
not work full duplex. To high-speed 
communication, memory is so busy, but data 
process logic has to wait and wait. 
 Maybe CAM is a good substitute, but it is still too 
expensive. And CAM need too many pins and higher 
power consumption that handicaps the overall 
performance.  
 
2.3 Union Buffer 
 To utilize the advantage of the two methods 
above-mentioned, we adopt union buffer that 
means the header of a packet stored in RAMS 
on-chip and the remainder enter RAMs on-chip. 
Some new applications have implemented this 

schema, such as the design of EECS150
[2]

 showed 

in figure 2-1, three ports Ethernet Switch, by 
Berkeley in 2004. In this design, RAMs on-chip 
work as nibbles FIFOs. 
 It should be pointed that, RAMs on-chip can 
act a more important role not if organized well. 
Another question is that high-speed ZBT SRAM 
can replace DDR if external buffer is not too huge. 
The following chapter will discus in detail. 
 

3 Multi-level Buffer Structure 
Generally speaking, pipeline operations are 

necessary for buffer control. Multi-level buffer make 
simplify every module, and accommodate vast flow 
sharp change. Figure 2-2 shows the whole structure. 

 
Fig.1 the design of three ports Ethernet Switch Structure 

(partial) 

 
 

FGPA

(Cascading)

MAC

PHY1 PHY2 PHYn …… 

MAC MAC 

Receive buffer Receive buffer Receive buffer

Send buffer Send buffer Send buffer 

 
Scheduler 

 
Header buffer 

 
ZBT SRAM

 
ZBT SRAM 

 
ZBT Controller Function  

Logic 1 
Function 

Logic m 
…… 

 
PCI Controller 

Fig.2 multi-level buffer structure 

 
3.1 Receive Buffer and Send Buffer 

Receive buffer and send buffer are constituted 
with full-duplex Block RAMs. They differ from 
the nibble FIFOs in MAC, and store the whole 
packet. They connected corresponding MAC with 

high-speed WISHBONE BUS
[3]

 (We recommend 

it).  
MAC works slower than Buffers because 

MAC interface data width is only 8-bit, and 
WISHBONE bus is usually 32-bit. So when the 
length of packet mod 4, the remainder is not zero, 
how to use the free part of a double word to limited 
on-chip RAMs ? 

Throwing is a good way. Suppose M means 
memory usage ratio. 

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp1016-1019)



�.Worst case 
The length of every packet is 65 Bytes, and its 

description is 4 Bytes. It needs 18 units. So 

( ) ( ) %83.954*18/465 =+=wM      (1) 

�. Average worst case 
Only 4 kinds of packet exist with the same 

probability and their length is 65, 66, 67 and 68 
Bytes.  

97.92%  4))*4)/(18
(67 4)*4)/(18(66 4)*4)/(18
(65 4)*4)/(17((64*25%

=+
++++
++=awM

   (2) 

�. Actual case 
awMM >  

Thus M is enough high and extra expense for 
align is not needed. 

Receive buffer and send buffer would not be the 
a bottleneck except they are always full, so scheduler 
is leading role. 
 
3.2 Header Buffer 
 If all packets are stored in ZBT SRAM, 
scheduler only process one receiving packet or one 
sending packet, because ZBT is sharing resource. 
Then memory access becomes the bottleneck. 
 Actually, deep level filter only cares the header of 
the whole packet. So we can put the header part( For 
example,128 Bytes) in Header Buffer which is 
comprised in the same way by Block RAMs. 
Because Block RAMs can be accessed full duplex, 
and many small packets need not enter external ZBT 
SRAM, Scheduler can parallel process packets from 
different directions. 
 
3.3 Scheduler 
 Scheduler is the core of multi-level buffer 
including sending controller and receiving 
controller. So schedule strategy must be enough 
flexible and balanced. We give a parallel schedule 
algorithm with weighted polling for buffers as 
followed: 

(1) If scheduler is free, turn to (2); else turn to 
(6); 

(2) The sending controller tries to lock ZBT 
control if needed, and receiving controller does so. 
Turn to (3) and (4); 

(3) At the next cycle, sending controller 
choose an export according to return value of 
function module (router). Scheduler gets data from 
Header buffer or ZBT SRAM. (Send buffer is prior 
to receive buffer.) Turn to (1); 

 (4) If receiving controller locks ZBT SRAM 
successfully, it chooses an entry, turn to (5); else 
turn to (6);  

(5) If one receiving buffer is full, it is priority 
is the highest; and if more than one is full, polling 
works. If no one is full, the one whose free space is 
the smallest is prior; and if they almost equal, 
polling works too. At the same time, data are 
stored in Header Buffer or ZBT SRAM. Turn to 
(1); 

(6) If the packet is not ( or not to be stored ) in 
external ZBT SRAM, another opposite 
transmission can be started. Turn to (1); 

(7) Choose a small packet to process opposite 
transmission if it can be founded. Else turn to (8); 

(8) Waiting until free or (7) can be process. 
Then turn to (1). 
 Certainly scheduler also manages other function 
modules. Because it always chooses a packet from 
Header Buffer to function modules, and function 
modules maybe scheduled orderly, pipeline is easy to 
implement only if time complexity of each module is 
approximate equal. 
 
3.4 Function Module 
 Function module can be design as router, state 
inspect, content filter, and so on. They are 
transparent to buffers. Only scheduler organizes 
them and provides data. If one module process 
frequently, its time complexity has great effect in 
delay of packet transmission and buffer loading. 
So excessively complex modules should be 
simplified and segmented. 
 

4 Hardware Implementation 

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp1016-1019)



Following the above schema, we design a 
four ports general gigabit-rate full-duplex process 
platform base a FGPA chip, Xilinx Vertex2 
XC2V3000 BG728 -4. It included three function 
modules: address route, state inspect and rule 
match. Estimated frequency by synthesizing is at 
least 143.5MHz, higher than the required 
frequency 125MHz at gigabit-rate speed. 
 Each function nodule processed a packet in at 
most 40 clock cycles, much lower than the time 
MAC finished a packet transmission (For 64 Bytes 
packet, at least 42 clock cycle including 
WISHBONE BUS communication).  Buffers 
would not get into a jam even if all packets were 
stored into ZBT SRAM, because it took almost the 
same time for function modules to processed 
different length packets. 
 To exchange devices, space of send buffer 
should equal to space of receive buffer. But in this 
way, it will be coordinating to deal with possible 
jam if the previous is bigger. 
 Tests showed when four gigabit-rate ports were 
full loading with 64 Bytes packets, no packets 
were rejected.  
 

5 Discuss 
 If one function nodule is designed to filter 
content, external mass memory will be necessary 
whatever the algorithm is. So memory access will 
be frequent, and centralized filter will consume 
overmuch cycles. To avoid reduce overall 
performance Filters can be set distribute to MAC, 
receive buffer or send buffer. 
 If half duplex is compatible, MAC will be 

more intricate
[4]

 and speed will go down. But that 

will not affect other parts much. With the 
development of network technique, half duplex 
will fall into disuse sooner or later. 
 Although buffers are not full generally in 
full-duplex mode, flexible flow control strategy is 

still necessary
[5]

.  

 Now ten-gigabit network becomes a hot spot. 
The schema can adapt faster environment without 
much modifications. If Pipeline design improves 
in advanced chips, frequency will increase enough 
high (156.25MHz) to cope with ten-gigabit-rate 
data flow. 
 

6 Conclusion 
 The paper presents a design of general 
gigabit-rate data buffer structure in high-speed 
exchange devices. The schema of multi-level 
buffer structure is flexible and credible. Parallel 
schedule algorithm increases speed of packet 
transmission to the utmost. 
 Its availability was verified by hardware 
implementation of four ports process platform. 
Trough pipeline improvement, the structure can be 
widely applied in advanced high-speed exchange 
interfaces even at ten-gigabit-rate speed. 
 

References 
[1] Peter Bellows, Jaroslav Flid, Tom Lehman: 

GRIP: A Reconfigurable Architecture for 
Host-Based Gigabit-Rate Packet Processing, 
FCCM’02 

[2] EECS150 Spring 2004 Final Project Voice over 
Ethernet Switch, Greg Gibeling, University of 
California at Berkeley. 

[3] WISHBONE System-on-Chip (SoC) Intercon- 
nection Architecture for Portable IP Cores, 
Version B3,www.silicore.netnet/wishbone. htm , 
2002.9 

[4] Igor Mohor: Ethernet IP Core Design Document, 
www.opencores.org, 2002.10 

[5] Yao Jia-kang: Analysis flow control of full- 
duplex gigabit Ethernet, Journal of China Civil 
Aviation University, Vol. 19�2000.6�40-43. 

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp1016-1019)


