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Abstract: This paper presents a novel idea of uncertainty-driven synchronization for a hyper-chaotic system. 
The idea is described in a general sense and a feedback control method is proposed for performing the chaotic 
synchronization based on nonlinear feedback by analyzing the stability of a nonlinear system in which the 
Lyapunov function is built. Owing to the existence of uncertain parameters in a nonlinear system, an adaptive 
law is applied for deduction. Synchronization with unequal parameters of a driving and responding system is 
achieved in this paper. The validity of the proposed approach is proved by computer simulations in a 
hyper-chaotic Rössler system. 
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1. Introduction 
In recent few years, chaotic synchronization in 
nonlinear complex system, an area of tremendous 
interest in nonlinear science and crossed fields, has 
potential applications in secure communication, laser 
light and biology systems. Chaotic synchronization 
has been widely studied since Pecora and Carroll [1] 
firstly introduced it. For the various approaches 
developed in these years, they can be classified into 
driving-responding system and coupled method. 

Linear feedback control synchronization is of 
simple structure and easy to be done, therefore it can 
be applied in many practical systems [2][3][4][5]. To 
design such systems, the key is selection of feedback 
gain or coupling coefficient. The design of feedback 
coefficient for the given system has been discussed 
in previous contributions, whereas the universal 
methods for the common chaotic systems are little. 
In addition, most studies are under the ideal 
circumstance, i.e., parameters of two systems being 
exactly identical, while in practice, it is hard to get 
the same parameters of two systems [6][7]. Besides, 
simulations of current works usually focus on the 
simple chaotic system. Hyperchaos, however, is able 
to make communication more practical and to 
improve the security as well. 

In this paper, we propose a method on parameter 
design for chaotic synchronization with linear 
feedback control according to the Taylor expansion 
and Lyapunov stability theory, and give a parameter 
adaptive formula. Simulations on such a 
hyper-chaotic system show that the method can well 
achieve synchronization in uncertain systems. 

 
 

2. Adaptive Unidirectional Feedback 
Synchronization Method and Its Stable 
Condition 
Consider a chaotic system 

θ)()( xgxfAxx ++=&         (1) 

where nRx ∈  is the state vector, nnRA ×∈  is a 
constant matrix, )(xf  is continuous nonlinear 

function and θ)(xg  is system structure 
parameters.  

Suppose 
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where fM  is the bounded matrix determined by 

rxx − , and gM  is the bounded matrix determined 

by state vectors rxx, . Many chaotic systems can 
meet this condition, e.g. Lur'e nonlinear systems and 
Lipschitz nonlinear systems. 

The equation of responding system is given by 
)()()( rrrrrr xxKxgxfAxx −+++= θ&   (3) 

where nnRK ×∈  is the control matrix. Meanwhile, 
define the system state error being rxxte −=)( . 

Subtracting Eq.(1) from Eq.(3) yieds the system 
state error, 
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Theorem 1. If there exist two positive constant 
matrixes P and Q and a positive constant γ , which 
satisfy 
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then the error system (4) is globally asymptotically 
stable (i.e. the two chaotic systems reach 
synchronization). 
 
[Proof] Construct a Lyapunov function as 
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where nnRP ×∈  are positive constant matrix and 
γ  is a positive constant, respectively. 

Calculate its derivative, we have 
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                (8) 
In terms of Lyapunov stability theory, this makes 

Eq.(4) globally and asymptotically stable. 
 

3. Simulation 
This section investigates a typical example to 

test a hyperchaotic Rössler system formulated in this 
paper. Simulations are carried out with the same and 
variant parameters, respectively. The hyperchaotic 
Rössler system is described as: 

  

      

      

bwczw

dxzz

wayxy

zyx

+−=
+=

++=
−−=

&

&

&

      (9) 

where wzyx ,,,  are state variables and 

dcba ,,, are system parameters. There is only one 
nonlinear term included in the system. In fact, when 

25.0=a , 05.0=b , 5.0=c , 3=d , the system 
produces high-dimensional chaotic phenomenon. 
 
3.1 With Certain Parameters 

The hyperchaotic Rössler system in Eq.(9) may 
be expressed as: 

)(xfAxx +=&      (10) 
The subsystem is defined as: 
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where 
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A  and )(xf  correspond to the linear and 

nonlinear part of system and K  represents the 
linear feedback parameter. 

Furthermore, from Eq.(2), we get 
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where, 
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Substitute A , fM  and K  into Eq.(4) and 

the error state equation of system is determined by 
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Since chaotic attractor is bounded, from 

Fig.1(a)-(d), ranges of state variables of the 
hyperchaotic Rössler system are 

05.1154.75 <<− x , 58.3473.47 <<− y , 

06.11304.0 << z  and 05.4005.9 << w  
respectively. 

From Eq.(5), we obtain 
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Using four-order Runge–Kutta integral, the 

initial conditions of driving and responding system 

are [ ]T25,2,1,5.1 and [ ]T2,0,3,2 −−− , respectively. 
The simulation results are given in Fig.1, which 
illustrates two systems running the fast 
synchronization after a short time adjusting. 
 

 
(a)    1 rxxe −=  

 
(b)   2 ryye −=  

 
(c)  1 rzze −=  

 
(d)        4 rwwe −=  

Fig.1  synchronization state errors 
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3.2 With Unknown Parameters 
The implementation of system synchronization with 
the given parameters has been discussed. Practically, 
parameters of chaotic systems cannot be obtained in 
prior or might be different as circumstance changes, 
thus the above-mentioned approach is not feasible. It 
is necessary to analyze the synchronization problem 
under uncertain parameters. 

Firstly, in case of unknown single parameter, 
assume that the subsystem is 

    ˆ
         

       

4

3

2

1

uwbczw

udzxz

uwayxy

uzyx

rrr

rrr

rrrr

rrr

++−=
++=

+++=
+−−=

&

&

&

   (16) 

where b̂  is the unknown parameter. 
Combining Eq.(9) and (16) gets 
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From Eq.(2), we have 
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Define 
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From Eq.(4), we get the system error state 
equation 

e

kb

kxz

k

k

eKMMAe

r

gf



















−−
−

−
−−−

=

−++=

4

3

2

1

5.000

00

1025.01

011

)(&

  (19) 

Combine Eq.(5) and (6), and we have 
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and 
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Applying four-order Runge–Kutta integral, set 
the initial conditions of driving and responding 

system be [ ]T25,2,1,5.1 and [ ]T2,0,3,2 −−− , 
respectively. The simulation results are shown in Fig. 
2, where (a)-(d) give the system state error, (e) is the 

identification process of parameter b̂ , and (f) is the 
control effectiveness. 
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   1)( rxxea −=  

 
  2)( ryyeb −=  

 
 1)( rzzec −=  

 
       4)( rwwed −=  

 
)(e  parameter b̂  

 
)( f control parameter u  

Fig.2. synchronization state error, parameter 
identification and control parameter 

 

4. Conclusion 
This paper investigated an uncertainty-driven 

synchronization approach based on feedback control. 
With the Taylor expansion and nonlinear stability 
theory, we proposed a universal method to design good 
feedback parameters. Moreover, we developed a 
parameter adaptive law in case of uncertain system 
parameters. Finally, numerical simulations were 
provided to demonstrate the effectiveness of the new 
method. 
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