
A Meta-model Syntax for Structural Constraints in ODP Enterprise
Language

Mohamed. Bouhdadi, El maâti. Chabbar, Hafid belhaj, Youssef bellouki

Department of Mathematics and Computer Science

University Mohammed V Faculty of Sciences
B.P1014 Rabat Morocco

.

Abstract: - The Reference Model for Open Distributed Processing (RM-
ODP) provides a framework within which support of distribution, inter-
working and portability can be integrated. It defines un object model;
architectural concepts and an architecture for the development of ODP
systems in terms of five viewpoints. However, RM-ODP is a meta-
norm and several ODP standards have to be defined. Indeed the
viewpoint languages are abstract in the sense that they define what
concepts should be supported not how these concepts should be
represented. Using the meta-modeling approach we define in this paper
the syntax for a fragment of ODP organizational defined in the
foundations part and in the enterprise viewpoint language. These
concepts are suitable for describing and constraining ODP enterprise
viewpoint specifications. This meta-modeling approach could be used
to define semantics and concepts characterizing dynamic behaviour in
ODP enterprise viewpoint.

Key-Words: - RM-ODP , Organizational Concepts, Enterprise Viewpoint
language, Meta-modeling Syntax.

1 Preliminaries.

The rapid growth of distributed processing has led to a need for coordinating
framework for the standardization of Open Distributed Processing (ODP). The
Reference Model for Open Distributed Processing (RM-ODP) [1-4] provides such a
framework. It creates an architecture within which support of distribution, networking
and portability can be integrated.

The foundations part [2] contains the definition of the concepts and analytical
framework for normalized description of (arbitrary) distributed processing systems.
These concepts are grouped in several categories including basic modeling concepts,
specifications concepts, organizational concepts, and structuring concepts. The

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 298

mailto:bouhdadi,%20chabbar%7D@fsr.ac.ma

architecture part [3] contains the specifications of the required characteristics that
qualify distributed processing as open. It defines a framework comprising

 Five viewpoints, called enterprise, information, computational, engineering
and technology which provide a basis for the specification of ODP systems.

 A viewpoint language for each viewpoint, defining concepts and rules for
specifying ODP systems from the corresponding viewpoint

 Specifications of the functions required to support ODP systems
 Transparency prescriptions showing how to use the ODP functions to

achieve distribution transparency;
.In other words, the three viewpoints do not take into account the distribution and
heterogeneity inherent problems. This principle corresponds closely to the concepts of
PIP/PSM models in the OMG MDA architecture [5].

However, RM-ODP is a meta-norm [8] and can not be directly applicable. Indeed, for
example, the viewpoint languages are abstract in the sense that they define what
concepts should be supported, not how these concepts should be represented. It is
important to not that, RM-ODP uses the term language in its broadest sense:" a set of
terms and rules for the construction of statements from the terms, «and does not
propose any notation for supporting the viewpoint languages. In fact, RM-ODP only
provides a framework for the definition of new ODP standards. These standards
include standards for ODP functions [6-7], standards for modeling and specifying
ODP systems; standards for methodology, programming, implementing, and testing
ODP systems. Elsewhere the languages Z [9], SDL [10] and LOTOS [11], and
Esterelle [12] are used in RM-ODP architectural semantics part [4] for the
specification of ODP concepts. Elsewhere, up to now no formal method is likely to
be suitable for specifying and verifying every aspect of an ODP system. The inherent
characteristics of ODP systems imply the need to integrate different specification
languages, and to handle non-behavioral properties of ODP systems.
There had been an amount of research for applying the UML [13] as a syntactic
notation to the ODP viewpoints [14-17]. The approach taken is to give a meta-model
description for the language ; it is a definition of that language in terms of itself.
This is presented in terms of three views: the abstract syntax, well-formedness rules,
and modeling elements semantics. The abstract syntax is expressed using a subset of
UML static modeling notations. The well-formedness rules are expressed in OCL
[18]. Indeed, we used the meta-modeling approach in our work [19] in order to define
the syntax of a sub-language for the ODP QoS-aware enterprise viewpoint
specifications. We used OCL for specifying the context constraints of the syntax of
the diagrammatical languages defined based on UML.

Elsewhere, a part of UML meta-model itself has a well defined semantics. Hence
UML could be adequate for ODP systems which necessitate well formed and
unambiguous languages in order to build ODP automatic tools which have to make
use of semantic content. In order to give a semantics to a modelling language (which
may not be directly executable), there are, essentially two approaches : an axiomatic
approach, which states what sentences in the languages ca be derived from other
sentences ; and a denotational approach, where expressions are mapped to the
« instances » they denote.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 299

A denotational approach [20] would be realised by a) a definition of the form of an
instance of every UML language element (e.g. the objects that could be denoted by a
class, the links that could be denoted by associations, etc.) and b) a set of rules which
determine which instances are and are not denoted by a particular language element.
There are three main steps to a denotational, meta-modelling approach to the
semantics approach:

1. Define the meta-model for the language of the model: object template, interface
template, action template, type, role
2. Define the met-model for the language of the instances: objects, links, and
interfaces,
3. Define the mapping or the meaning function (also within the meta-model) between
these two languages.

There are good reasons for adopting a meta-modelling approach for in the context of
UML and of ODP systems. The UML meta-models provide a blueprint for the core
of any CASE tool. The tools include a consistency checker that makes sure invariants
defined on a model do not conflict, a consistency checker between meta-models that
makes sure that different system specifications are consistent and do not conflict.
Also, tools can be built which generate code from UML meta-models, and these tools
can be used to bootstrap themselves every time the meta-model is changed or
extended. Furthermore, for testing ODP systems [2-3], the current testing techniques
[21], [22] are not widely accepted. However, a new approach for testing, namely
agile programming [23], [24] or test first approach [25] is being increasingly adopted.
The principle is the integration of the system model and the testing model using UML
meta-modeling approach [26].

This approach is based on the executable UML [27]. In this context OCL is used to
specify the properties to be tested. OCL also serves to attach constraints to UML
meta-models in order to verify the coherence of meta-models and to translate the
constraints into code for evaluating them on instance models.

The part of RM-ODP considered in this paper is a subset for describing ODP
enterprise object structure. It consists of modeling and specifying concepts defined in
the RM-ODP foundations part and concepts in the enterprise viewpoint language.
We do not consider concepts for describing dynamic behaviour.

For characterizing models, it includes the essentials of class diagrams, and a
significant fragment part of the OCL, a precise language based on first order –logic,
used for expressing constraints on object structure which cannot be expressed by
class diagrams alone. For characterizing instances of models, it includes the language
of object diagrams. Because of the role of OCL in ODP information viewpoint
specifications, a major component of the meta-model presented is a representation of
the concepts underpinning OCL. Thus the UML/OCL meta-model developed here
elaborates the conceptual core of the ODP enterprise viewpoint language for ODP
enterprise specifications. It is not tied to any particular concrete syntax.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 300

Section 2 describes the subset of concepts considered in this paper namely the object
model, organizational concepts and enterprise language. Section 3 describes the the
enterprise language defined in the framework part. Section 4 describes the meta-
model for generic models, object, action, interaction, interface, template,
type/subtype, class/subclass, basic class/derived class. A conclusion and
perspectives end the paper. .

2 The RM-ODP

RM-ODP is a framework for the construction of open distributed systems. It defines
a generic object model in the foundations part and an architecture which contains the
specifications of the required characteristics that qualify distributed processing as
open. The architecture extends and specializes the object concepts of the foundations
part.

2.1 The RM-ODP Object Model (Foundations part)

In general, the term object model refers to the collection of concepts used to describe
objects in an object-oriented spacification (OMG CORBA object model [2], RM-ODP
object model [4]. It corresponds closely too the use of the erm data-model in the
relational data model. To avoid misunderstandings, theh RM-ODP defines each of the
concepts commonly encountered in objectt oriented models. It underlines a basic
object model which is unified in the sense that it has successfully to serve each of the
five ODP viewpoints. It defines the basic concepts concerned with existence and
activity: the expression of what exists, where it is and what it does. The core concepts
defined in the object model are object and action.

 An object is the unit of encapsulation : a model of an entity. It is
characterized by its behavior and, dually, by its states. Encapsulation means that
changes in an object state can occur only as a result of interna actions or interactions.

An action is a concept for modeling something which happens. ODP actions
may have a duration and may overlap in time. All actions are associated with at least
one object : internal actions are associated with a single object ; interactions are
actions asociated with several objects.

Objects have an identity, which means that each object is distinct from any
other object. Object identity implies that there exists a reliable way to refer to objects
in a model.

Depending on the RM-ODP viewpoint, the emphasis may be placed on the

behavior or on the states. When the emphasis is placed on behavior an object is
informally said to perform functions and offer services, theses functions are specified
in terms of interfaces. It interacts with its environment at its interaction points which

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 301

are its interfaces. An interface is a subset of the interactions in which an object can
participate. In contrast to other object models, an ODP object can have multiple
interfaces. Like objects, interfaces can be instantiated.

The other concepts defined in the object model are derived from the concepts of
object and action; those are class, template, type, subtype/supertype,
subclass/superclass, composition, and behavioral compatibility.

Composition of objects is a combination of two or more objects yielding a new object.

An object is behaviorally compatible with a second object with respect to a set of
criteria if the first object can replace the second object without the environment
being able to notice the difference in the object behavior on the basis of the set of
criteria.

A type (of an $<x>) is a predicate characterizing a collection of <x>s. Objects and
interfaces can be typed with any predicate, but are commonly typed on the basis of
the template of which they are intances. The ODP notion of type is much more
general than of most object models. Also ODP allows ODP to have several types, and
to dynamically change types.

A class (of an <x>) defines the set of all <x>s satisfying a type. An object class, in
the ODP meaning, represents the collection of objects that satisfy a given type.
Manyy objectt models do not clearly distinguish between a specification for an object
and the set of objects that fit the specification. ODP makes the distinction template
and class explicit. The class concept corresponds to the OMG extension concept, the
extension of a type is the set of values that satisfy the type at a particular time. A
subclass is a subset of a class. A subtype is therefore a predicate that defines a
subclass. ODP subtype and subclass hierarchies are thus completely isomorphic.

A <x> template is the specification of the common features of a collection x in a
sufficient detail that an x can be instantiated using it.

Types, classes, templates are needed for object, interface, and action.

2. 2 RM-ODP organizational concepts

The definition of a language for each viewpoint describes the concepts and rules for
specifying ODP systems from the corresponding viewpoint. The object concepts
defined in each viewpoint language are specializations of those defined in the
foundations part of RM-ODP. We give here the organizational concepts.

<x> Group : a set pf objects with a particular characterizing relationship <x>. The
relationship <x> characterizes either the structural relationship among objects or a
expected common behaviour of the objects. Examples of specialize groups are :
addressed group, fault group, communication group.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 302

Configuration (of objects): a collection of objects able to interact at interfaces. A
configuration determines the set of objects involved in each interaction. The
specification of a configuration may be static or may be in terms of the operation of
dynamic mechanisms which change the configuration, such as binding and unbinding.

<x> Domain : a set of objects, each of which is related by a characterizing
relationship <x> to a controlling object. Each domain has a controlling object
associated with it. The controlling object can determine the identities of the collection
of the objects which comprises the associated domain. The controlling object may
communicate with a controlled object dynamically or it may be considered to have
communicated in an earlier epoch of the controlling object. Generally, the controlling
object is not a member of the associated domain.
In enterprise terms, various policies can be administered by the controlling object
over the domain. Domains can be disjoint or overlapping. By definition, a domain is
a group, but not vice versa.

Subdomain : a domain which is a subset of a domain;

3 The RM-ODP enterprise viewpoint language

An enterprise specification is concerned with the purpose, scope and policies for theh
ODP system. Bellow, we summarise the basic enterprise concepts.
 Community is the key enterprise concept. It is defined as a configuration of
ojects formed to meet an objective. The objective is expressed as a contrat that
specifies how the objective can be meet.

A contract is a generic concept that specifies an agreement governing part of
the collective behaviour of a set of objects. A contarct specifies obligations,
permissions and prohibitions for objects involved. A contact specification may also
include the specification of different roles engaged in the contract, the interfaces
associated with the roles, quilatyy of service attributes, indications of period of
validity, behaviour that invalidate the contrat, andn liveness and safety conditions.

The community specification also includes the environment contracts that
state policies governing interactions of this community with itst environment.
 In situations when two or more groups of objects, under control of different
autorities, engage in cooperation to meet a mutual objective, they form a specifal kind
of community called a federation.

 A role is a specification concept describing behaviour. A role may beb composed of
several roles. A configuration of objects establishe for achieving some objective is
referred to as a communiti. A role thus identifies behaviours to be fulfilled by the
objects comprising the community. A enterprise object is an object that filles one or

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 303

more roles in a community. It can also participate in more than one community at one
time.

A policy statement provides a additional behavioural specification. A community
contract uses policy statements to separate behavioural specifications about roles.
Examples of policy are the statements of permissions, prohibitions, and the
obligations related to the roles or the enterprise objects.

A policy is a set of rules related to a particular purpose. A rule can be expressed as an
obligation, a permission, or a prohibition. An ODP system consists of a set of
enterprise objects.

An enterprise object may be a role, an activity or a policy of the system.

4 Syntactic Domain

In this section we give the meta-models describing the contex free syntax for the
above concepts. Figures 1, 2 and 3 define the objet model, the organizational concepts
and the enterprise viewpoint concepts.

We give here some context contraints in OCL.

Context m : Model inv :

m.Roles->includesAll(m.Roles.Source ->union(m.Roles.Target)
m.Roles->includesAll(m.ObjectTemplates.Roles)
m.Roles->includesAll(m.Interactiontemplate.roles)
m.Roles->includesAll(m.InterfaceTemplate.roles)

m.InteractionTemplates -> includesAll(m.ObjectTemplates.Interactiontemplates)
m.InteractionTemplates.Types->includesAll(m.Types)

m.ObjectTemplates.InterfaceTemplates->includesAll(m.InterfaceTemplates)

m.ObjectTemplates.InterfaceTemplates->includesAll(m.InterfaceTemplates)
includesAll(m.ObjectTemplates.Interactiontemplates)
m.Types->includesAll(m.InteractionTemplates.Types-
>union(m.InterfaceTemplates.Types)- >union(m.InteractionTemplate.Target)

Context i : Interaction template inv :
r.role.inverse = r.Interactions.Roles.Source .inverse
and r.role.source = r.Interactions.Roles.Source .source
and r.role.source.inverse = r.Interactions.Roles.Source .inverse

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 304

Context o : Object Template inv :
cot is not parent of or child of itself
not (cot.parents ->includes(cot) or cot.children->includes(cot))

4 Conclusion and perspectives
The Reference Model for Open Distributed Processing (RM-ODP) is a meta-norm
which provides a framework within which support of distribution, inter-working and
portability can be integrated. It defines un object model; architectural concepts and
an architecture for the development of ODP systems in terms of five viewpoints.
However,. the viewpoint languages are abstract in the sense that they define what
concepts should be supported not how these concepts should be represented. Using
the meta-modeling approach we define in this paper the syntax for a fragment of
ODP organizational defined in the foundations part and in the enterprise viewpoint
language. These concepts are suitable for describing and constraining ODP enterprise
viewpoint specifications. This meta-modeling approach could be used to define
semantics and concepts characterizing behavioral concepts in ODP enterprise
viewpoint.

References

[1] ISO/IEC, Basic Reference Model of Open Distributed Processing-Part1: Overview and
Guide to Use, ISO/IEC CD 10746-1, July 1994.
[2] ISO/IEC, RM-ODP-Part2: Descriptive Model, ISO/IEC DIS 10746-2, February 1994.
[3] ISO/IEC, RM-ODP-Part3: Prescriptive Model, ISO/IEC DIS 10746-3, February 1994.
[4] ISO/IEC, RM-ODP-Part4: Architectural Semantics, ISO/IEC DIS 10746-4, July 1994.
[5] OMG, The Object Management Architecture, OMG, 1991. http://www.omg.org
[6] ISO/IEC, ODP Type Repository Function , ISO/IEC JTC1/SC7 N2057, January 1999.
[7] ISO/IEC, The ODP Trading Function, ISO/IEC JTC1/SC21, June
1995.
[8] M. Bouhdadi et al. A Methodology for the Development of Open Distributed Systems,
Proc. JDIR'98, Paris France October 1998, pp. 200-208
[9] J.M. Spivey, The Z Reference manual, Prentice Hall, 1992.
[10] IUT, SDL: Specification and Description Language, IUT-T-Rec. Z.100, 1992.
[11] ISO and IUT-T, LOTOS: A Formal Description Technique Based on the Temporal
Ordering of Observational Behavior, ISO/IEC 8807, August 1998.
[12] H. Bowman et al. FDTs for ODP, Computer Standards & Interfaces Journal, Elsevier
Science Publishers, Vol.17, No.5-6, 1995, pp. 457-479.
[13] J. Rumbaugh et al., The Unified Modeling Language, Addison Wesley, 1999.
[14] www.edoc.org
[15] B. Rumpe, A Note on Semantics with an Emphasis on UML, Second ECOOP Workshop
on Precise Behavioral Semantics, Technische Universitaty unchen publisher, 1998.
[16] A. Evans et al., Making UML precise, OOPSLA'98, October 1998,
[17] A. Evans et al. The UML as a formal notation, UML'98, France June 1998, LNCS 1618,
Springer Berlin, 1999, pp. 336-348
[18] J. Warner and A. Kleppe, The Object Constraint Language: Precise Modeling with UML,
Addison Wesley, 1998.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 305

http://www.edoc.org/

[19'] M. Bouhdadi, An UML-based Meta-language for the QoS-aware Enterprise
Specification of Open Distributed Systems, IFIP TC5/WG5.5 Third Working Conference on
Infrastructures for Virtual Enterprises (PRO-VE'02), May 1-3 Sesimbra Portugal, Kluwer Vol.
213 (IFIP Conference Proceeding series), 2002. Collaborative Business Ecosystems & Virtual
Enterprises IFIP Series Vol. 85 Springer Boston 2002.
[20] D.A. Schmidt, Denotational semantics: A Methodology for Language Development, Allyn
and Bacon, Massachusetts, 1986.
[21] Myers, G. The art of Software Testing, John Wiley &Sons, New York, 1979
[22] Binder, R. Testing Object Oriented Systems. Models. Patterns, and Tools, Addison-
Wesley, 1999
[23] Cockburn, A. Agile Software Development. Addison-Wesley, 2002.
[24] Bernhard Rumpe. Agile Modeling with UML. Habilitation Thesis, Germany, 2003.
[25] Beck K Column on Test-First Approach. IEEE Software, 18(5):87-89, 2001
[26] Briand L. and Labiche Y. A UML-based Approach to System testing. In M. Gogolla and
C. Kobryn (eds): “ UML” – The Unified Modeling Language, 4th Intl. Conference, LNCS
2185. Springer, 2001 pp. 194-208,
[27] Bernhard Rumpe, Executable Modeling with UML. A vision or a Nightmare? In Issues &
Trends of Information Technology Management in Contemporary Associations, Seattle. Idea
group Publishing, Hershey, London, pp. 697-7001. 2002

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 306

