
Handwritten Character Recognition using Conditional Probabilities

M. PADMANABAN, AND E. A. YFANTIS
Digital Image Processing Laboratory

Department of Computer Science
University of Nevada, Las Vegas

4505 Maryland Parkway Las Vegas, NV 89154
UNITED STATES OF AMERICA

 http://web.cs.unlv.edu/digitalimageprocessinglab

Abstract: - Handwritten Character Recognition is an important part of Pattern Recognition. This is also
referred to as Intelligent Character Recognition (ICR). In this paper, a conditional probability based
combination of multiple recognizers for character recognition will be introduced. After preprocessing the
given character image, different feature recognition algorithms are employed, and their performance on a
given training set is analyzed. The reliability of the recognition algorithms is measured in terms of Conditional
Probabilities. A rule based on their reliability is identified to combine all these individual feature recognition
algorithms by incorporating their interdependence.

Key-Words: - Character Recognition, OCR, ICR, Text-Recognition, Preprocessing, Conditional Probability.

1 Introduction
Optical Character Recognition (OCR) is the
translation of optically scanned bitmaps of printed
text characters into character codes, such as ASCII.
Handwritten character recognition is similar in
concept, except that the input is in the form of
handwriting. Handwritten character recognition can
be broadly divided into two categories: On-line
recognition and Off-line recognition. In the on-line
case, the two-dimensional coordinates of successive
points of the writing as a function of time are stored
in order (for example, the order of strokes made by
the writer is readily available). In the off-line case,
only the completed writing is available as an image.
The on-line case deals with a spatio-temporal
representation of the input, whereas the off-line case
involves analysis of the spatio-luminance of an
image.
 This paper revolves around the Off-line
recognition. The recognition of hand written
characters is a special kind of complex mathematical
problem, because the different distortions present in
hand written character set makes it difficult to
produce a distinct set identification. Handwritten
character recognition has numerous applications
such as address and zip code recognition, writer
identification, Bank Check Recognition, etc [1] [2]
[3].
 The character recognition process begins with
preprocessing where the application form is scanned
and the handwritten parts are found, separated and
transformed into a binary matrix with 0 representing

black pixel and 1 representing white. The next phase
is the character segmentation which looks for the
area of each character in the matrix. In the feature
extraction phase, each character is analyzed to
extract different features. These features are then
used for classification of characters.

2 Feature Extraction
In the preprocessing phase [4], the form is given as
the input and the system extracts the content. The
first job of the system is to correct the orientation of
the form. Next, the noise is removed and then the
characters are segmented. Preprocessing is
important because it aids in improving the accuracy
of the recognition.

Fig.1. Skew Removal: (a) Slant Letter (b) Deskewed
Letter.

(a) (b)

2.1 Skew Removal
Skew can be removed by using the projections of the
histogram. Histogram projections of the image tilted
at angles between –5º to +5º are generated. The tilt
angle for which the histogram gives maximum peak
value is the skew angle. The image is rotated
accordingly. See Fig.1.

2.2 Noise Removal
The noise is removed using smoothing algorithms or
filters. The Gaussian filter is a good example of a
smoothing operation. A 5 x 5 matrix mask as shown
in the Fig.2 is used. The smoothing operator blurs
the image and removes the spurts.

Fig.2. Sample 5 * 5 Gaussian Mask

2.3 Thresholding
Thresholding is used to differentiate between the
foreground (ink) and the background (paper). The
Handwritten characters are then extracted, converted
to a binary array and stored in a database.

2.4 Character Segmentation
 After the preprocessing stage, the handwritten text
has been transformed into matrices with binary
values, where zeroes denote black pixels (i.e. the
handwritten characters) and ones white pixels (i.e.
the empty space around the character). The next step
is to separate the characters. A simple approach is
identifying the physical gaps using only the
components. These methods assume that gaps
between words are larger than the gaps between the
characters. However, in handwriting, this is not the
case. Most recognition methods call for
segmentation of the word into its constituent
characters. Segmentation points are determined
using features like ligatures and concavities. Gaps
between character segments (a character segment
can be a character or a part of character) and heights
of character segments are used in the algorithm.

2.5 Extraction of Features
Feature Extraction is the process of extracting a set
of parameters that define the shape of the underlying
character as precisely and uniquely as possible.
Generally, the character images are not of the same
size; they are of arbitrary size. In machine-print, a
height to width ratio (aspect ratio) of 4:3 is common,
but there is no fixed aspect ratio in handwritten
characters. Sizes of the image may vary from
approximately 8 x 8 to 200 x 200 for document
images digitized at 300 ppi. So, larger variations in
size are noticeable among handwritten rather than
machine-printed characters. Any feature extractor
for such images should be applicable for all input
image sizes. There are some cases in which the
characters from different classes look similar, like
the characters ‘I’ and ‘J’. So, localized analysis of
contours is essential.

3 Recognition Algorithms
Each image of size D1 x D2 is divided into N1 x N2
parts. Each partition has dimension (D1/N1) x
(D2/N2) approximately. The following are some of
the algorithms used for Feature Recognition applied
to each partition. A feature vector is obtained for
each algorithm.

3.1 Local Center of Gravity
The “Center of Gravity” [5] for each partition is
computed. The local center of gravity (Xcg, Ycg) is
found by determining the center of gravity for each
partition. The distance between the local center of
gravity and the whole center of gravity of the
number is found, and the distance is normalized by
dividing the distance by the width of the number.

i

ii
cg m

xm
XavityCenterofGr ∑=

i

ii
cg m

ym
YavityCenterofGr ∑=

3.2 Connectivity
The connectivity between segments adjacent to each
other in horizontal and vertical directions is
determined. Connectivity between segments is
represented by a ‘1’ and no connectivity is
represented by a ‘0’. Image is thinned and
partitioned as shown in Fig.3.

(1)

(2)

Fig.3. Connectivity

3.3 Extreme Points
The horizontal mid-point of the character image
along with the extreme left and right points in each
partition is calculated. If the extreme point [6] is on
the left side, then a negative sign is introduced. Then
the distance between extreme points and the
midpoint is calculated and normalized by dividing it
with the width.

3.4 Number of Tips
Characters are thinned. For every black pixel, it is
checked whether it has more than one black
neighboring black pixel. If it has only one black
neighboring pixel, it is noted as tip. The number of
tips [6] in each partition is stored.

3.5 Gradients
The gradient map of each partition is determined to
find the local contour variations. Then the gradient
angles are quantized. The gradient angle is
determined using the Sobel masks shown in fig.4.

Fig.4. Sobel Masks

The Sobel Operator for horizontal component is

Dx (i,j) = I(i-1,j+1) + 2I(i,j+1) + I(i+1,j+1)
 - I(i-1,j-1) - 2I(i,j-1) - I(i+1,j-1)

 and the Sobel Operator for vertical component is

Dy (i,j) = I(i-1,j-1) + 2I(i-1,j) + I(i-1,j-1)
 - I(i+1,j-1)- 2I(i+1,j) - I(i+1,j+1)

 The angle of the edge pixels is then calculated
using the formula

Theta (i,j) = Arc Tan (Dy(i,j) /Dx(i,j))

 Quantizing gradient directions into a small
number (K) of ranges aids in the generation of fixed
number of features. For example, we can set 12
ranges (bins) : 0o-30o, 30o-60o, 60o-90o…….. 330o-
360o.

3.6 Wavelets
The image is first normalized to size N*N pixels,
where N = 2K. The Haar or Daubechies’s kernels are
applied recursively (2–levels). At each level, 4
quadrants are available. The top-left is decomposed
recursively as shown in the figure below.

Fig.5. (a) Original Image, (b) Wavelets

 Each sub-image is partitioned into m*m blocks.
The 1st and 2nd Moments [7] are computed for each
block as follows:

1st Moment:

∑∑
−

=

−

=

=
1

0

1

0
2),(1 n

j

n

i
yxb

n
µ

2nd Moment:

[]∑∑
−

=

−

=

−=
1

0

2
1

0
2),(1 n

j

n

i

yxb
n

µσ

These moments are stored in the feature vector.

3.7 String Distance Measurement
First, the image is thinned. Row by row, two
successive pixel rows are considered. The distance
‘S’ between the current black pixel (Bi) and the next
row black pixel (Bi+1) is calculated. All the distances
for a total of k rows are summed up to compute the
string distance measurement (SD) [8].

(4)

(3)

(5)

(7)

(6)

∑
=

=
k

i
iSSD

1

 “String Line Measurement” (SLIM) is also added
to differentiate the horizontal and vertical lines. If
the line is horizontal or vertical, then SLIM is set to
one. The final equation is:

∑
=

+=
n

j
jii factorfactorSDM

1
βα

where

)//

(

ij

jij

ii

CountBlacksegmentHV

withinsBlackPixelSLIMSDfactor
SDfactor

=
=

β
α

 SDM for each partition is stored in to the feature
vector.

3.8 Angular Moments
The image is partitioned with respect to center of
gravity. Then the three Moments [9] (mass, distance
and standard deviation) are calculated for each
partition.

Fig.6. Angular Partitions

Mass:

∑
∈

=
pr

irM
pm 01)(

Distance:

∑
∈

=
pr

irR
pr 11)(

Standard Deviation:
22)(1)(∑

∈

−=
pr

pi rr
S

pσ

 Summation goes over the black pixels of the
partition. The normalizing factor M, R and S are the
summation (Moments) over the whole image.

4 Classifications
A classifier that is trained on a labeled data set can
be used for future prediction of class labels for
unknown instances.
 The classifier predicts a class label, wu, for an
unknown feature vector ‘y’ from a discrete set of
previously learned labels {w1, w2 … wn}. It can be
shown that to minimize classification errors, one
should assign the example to the class with the
largest posterior probability P(wi | y). This is known
as the maximum aposteriori rule [10], and is the best
any classifier can do. So, the job of the classifier is
to estimate P(wi | y) from the unknown data set.
 Training a classifier can be time consuming and
require significant amounts of memory, especially
for large data sets.

4.1 K – Nearest Neighbor Classifiers
The K Nearest Neighbor (kNN) algorithm [11] [12]
[13] predicts the outcome y for an unknown wu by
finding the k labeled training data set nearest to wu
within a pre-classified dataset D. It classifies wu
using the maximum vote of the nearest ‘k’
neighbors. The kNN method is a powerful technique
that can be used to generate highly nonlinear
classifications with limited data.
 Normally, the “closeness” is measured by
Euclidean distance. For two tuples, X = <x1, x2, x3
… xn-1> and Y = y1, y2, y3… yn-1>, the Euclidian
distance is

∑
=

−=
n

i
ii yxYXD

1

2)(),(

Fig.7. K Nearest Neighbor

 The main limitations of kNN are storage
requirements (since the entire dataset needs to be
available for matching) and the computational cost
(since for each unknown data, the distance to all
training samples needs to be computed). These

(8)

(11)

(12)

(13)

(14)

(9)

(10)

limitations, however, can be overcome by editing
the training set [14], and generating a subset of
prototypes. The kNN algorithm is extremely
sensitive to the dimension of the features. So,
special attention must be paid to the scaling of each
feature dimension.

5 Combining Recognizers
The “confusion matrix”, C, of each recognizer on a
training set of data is used as indicators of the
recognizers performance. C is an M × (MK) matrix,
for M classes and K recognizers. From the matrix C,
the row sum Cij is calculated, which gives the total
number of samples belonging to class ‘i’. Column
sum Cij gives the total number of samples that are
assigned a class pattern ‘j’.
 The conditional probability [15] that a pattern, x,
actually belongs to class ‘i’, given that the
recognizers classify it as pattern ‘j’, can be estimated
as

∑
=

==∈ M

i

k
ij

k
ij

i

C

C
jxeCxP

1

)(

)(

))(|(

 The class ‘i’ with the maximum probability value
is the correct output. A two class problem with three
recognizers produces a 2 x 8 matrix as follows:

Fig.8. Confusion Matrix

 The row values are the input, and the column
values are the outputs of the 3 recognizers i, j, k
respectively.
So,

∑= ColSumTotalSum

)0,0,0(
)0,0,0,0(

)0,0,0|0(

===
====

=

====

XkXjXiP
XkXjXiXP

XkXjXiXP

)/(

)/0(
TotalSumColSumA

TotalSumA
=

Therefore,

ColSumA
A

XkXjXiXP
0

)0,0,0|0(

=

====

 By using these probability values, the correct
output class ‘i’ (having the maximum conditional
probability value) can be determined, given that the
recognizers classify it as pattern ‘j’.

6 Conclusions
Recognition of complex handwritten characters
remains a great research area. By using the
conditional probabilities to combine the multiple
recognizers, high accuracy of recognition is
achieved.

References:
[1] Sung-Hyuk Cha, Sargur N. Srihari, Writer

Identification: Statistical Analysis and
Dichotomizer, Lecture Notes in Computer
Science, Volume 1876, Jan 2000, Page 123

[2] G. Leedham and S. Chachra, Writer
identification using innovative binarised features
of handwritten numerals. In Seventh
International Conference on Document Analysis
and Recognition, pages 413–417, 2003.

[3] G. Kim and V.GovindaRaju, A Lexicondriven
approach to Handwritten Word Recognition for
Real Time Applications, IEEE Trans. Pattern
Analysis and Machine Intelligence, Volume 11,
no.4, pp.366-379, Apr.1997.

[4] P. Slavik, V. Govindaraju, Equivalence of
different methods for slant and skew corrections
in word recognition applications. IEEE Trans.
Pattern Analysis and Machine Intelligencee,
Volume 23, Issue 3, March 2001 Page(s):323 -
326

[5] S. Mori, H. Nishida, and H. Yamada. Optical
Character Recognition. John Wiley and Sons,
Inc., 1999.

[6] Heutte, L., Paquet, T., Moreau, J. V., Lecourtier,
Y., and Olivier, C. 1998. A structural/statistical
feature based vector for handwritten character
recognition. Pattern Recogn. Lett. 19, 7 (May.
1998), 629-641.

[7] Jong-Hyun Park, Il-Seok Oh, Wavelet-Based
Feature Extraction from Character Images,
Lecture Notes in Computer Science, Volume
2690, Aug 2003, Pages 1092 - 1096

[8] S. Singh. Shape Detection Using Gradient
Features for Handwritten Character Recognition,
icpr, vol. 03, no. 3, p. 145, 13th 1996.

[9] Tsang, I.J., Tsang, I.R., Dyck, D.V., 1998.
Handwritten character recognition based on
moment features derived from image partition.

 0,0,0 0,0,1 … 1,1,0 1,1,1
0 A0 B0 … G0 H0
1 A1 B1 … G1 H1
 Col

SumA
Col
SumB

… Col
SumG

Col
SumH

(15)

(16)

(17)

In: International Conference on Image
Processing, vol. 2, pp. 939-942.

[10] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern
Classification, 2nd ed. New York: Wiley, 2000.

[11] Y. Hammamoto et. al, A Bootstrap Technique
for Nearest Neighbor Classifier Design, IEEE
Trans. Pattern Analysis and Machine
Intelligence, vol. 19, no. 1, Jan. 1997.

[12] T. Hastie and R. Tibshirani, Discriminant
Adaptive Nearest Neighbor Classifier, IEEE
Trans. Pattern Analysis and Machine
Intelligence, vol. 18, no. 6, June 1996.

[13] S.A. Nene and S.K. Nayar, A Simple Algorithm
for Nearest Neighbor Search in High
Dimensions, IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 19, no. 9, pp. 989-
1003, Sept.1997.

[14] B. V. Dasarathy, Nearest Neighbor (NN)
Norms: NN Pattern Classification Techniques.
Los Alamitos, CA: IEEE Comp. Soc.Press, 1991.

[15] John Haigh. Probabilty Models. Springer, 2002.

