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Abstract: - Handwritten Character Recognition is an important part of Pattern Recognition. This is also 
referred to as Intelligent Character Recognition (ICR). In this paper, a conditional probability based 
combination of multiple recognizers for character recognition will be introduced. After preprocessing the 
given character image, different feature recognition algorithms are employed, and their performance on a 
given training set is analyzed. The reliability of the recognition algorithms is measured in terms of Conditional 
Probabilities. A rule based on their reliability is identified to combine all these individual feature recognition 
algorithms by incorporating their interdependence. 
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1   Introduction 
Optical Character Recognition (OCR) is the 
translation of optically scanned bitmaps of printed 
text characters into character codes, such as ASCII. 
Handwritten character recognition is similar in 
concept, except that the input is in the form of 
handwriting. Handwritten character recognition can 
be broadly divided into two categories: On-line 
recognition and Off-line recognition. In the on-line 
case, the two-dimensional coordinates of successive 
points of the writing as a function of time are stored 
in order (for example, the order of strokes made by 
the writer is readily available). In the off-line case, 
only the completed writing is available as an image. 
The on-line case deals with a spatio-temporal 
representation of the input, whereas the off-line case 
involves analysis of the spatio-luminance of an 
image. 
     This paper revolves around the Off-line 
recognition. The recognition of hand written 
characters is a special kind of complex mathematical 
problem, because the different distortions present in 
hand written character set makes it difficult to 
produce a distinct set identification. Handwritten 
character recognition has numerous applications 
such as address and zip code recognition, writer 
identification, Bank Check Recognition, etc [1] [2] 
[3]. 
     The character recognition process begins with 
preprocessing where the application form is scanned 
and the handwritten parts are found, separated and 
transformed into a binary matrix with 0 representing 

black pixel and 1 representing white. The next phase 
is the character segmentation which looks for the 
area of each character in the matrix. In the feature 
extraction phase, each character is analyzed to 
extract different features. These features are then 
used for classification of characters. 
 
 
2   Feature Extraction 
In the preprocessing phase [4], the form is given as 
the input and the system extracts the content. The 
first job of the system is to correct the orientation of 
the form. Next, the noise is removed and then the 
characters are segmented. Preprocessing is 
important because it aids in improving the accuracy 
of the recognition. 

 
Fig.1. Skew Removal: (a) Slant Letter (b) Deskewed 
Letter. 

(a) (b) 



2.1 Skew Removal 
Skew can be removed by using the projections of the 
histogram. Histogram projections of the image tilted 
at angles between –5º to +5º are generated. The tilt 
angle for which the histogram gives maximum peak 
value is the skew angle. The image is rotated 
accordingly. See Fig.1. 
 
 
2.2 Noise Removal 
The noise is removed using smoothing algorithms or 
filters. The Gaussian filter is a good example of a 
smoothing operation. A 5 x 5 matrix mask as shown 
in the Fig.2 is used. The smoothing operator blurs 
the image and removes the spurts. 
 

 
Fig.2. Sample 5 * 5 Gaussian Mask 
 
 
2.3 Thresholding 
Thresholding is used to differentiate between the 
foreground (ink) and the background (paper). The 
Handwritten characters are then extracted, converted 
to a binary array and stored in a database. 
 
 
2.4 Character Segmentation 
 After the preprocessing stage, the handwritten text 
has been transformed into matrices with binary 
values, where zeroes denote black pixels (i.e. the 
handwritten characters) and ones white pixels (i.e. 
the empty space around the character). The next step 
is to separate the characters. A simple approach is 
identifying the physical gaps using only the 
components. These methods assume that gaps 
between words are larger than the gaps between the 
characters. However, in handwriting, this is not the 
case. Most recognition methods call for 
segmentation of the word into its constituent 
characters. Segmentation points are determined 
using features like ligatures and concavities. Gaps 
between character segments (a character segment 
can be a character or a part of character) and heights 
of character segments are used in the algorithm. 
 
 

2.5 Extraction of Features 
Feature Extraction is the process of extracting a set 
of parameters that define the shape of the underlying 
character as precisely and uniquely as possible. 
Generally, the character images are not of the same 
size; they are of arbitrary size. In machine-print, a 
height to width ratio (aspect ratio) of 4:3 is common, 
but there is no fixed aspect ratio in handwritten 
characters. Sizes of the image may vary from 
approximately 8 x 8 to 200 x 200 for document 
images digitized at 300 ppi. So, larger variations in 
size are noticeable among handwritten rather than 
machine-printed characters. Any feature extractor 
for such images should be applicable for all input 
image sizes.  There are some cases in which the 
characters from different classes look similar, like 
the characters ‘I’ and ‘J’. So, localized analysis of 
contours is essential.  
 
 
3   Recognition Algorithms 
Each image of size D1 x D2 is divided into N1 x N2 
parts. Each partition has dimension (D1/N1) x 
(D2/N2) approximately. The following are some of 
the algorithms used for Feature Recognition applied 
to each partition. A feature vector is obtained for 
each algorithm. 
 
 
3.1 Local Center of Gravity 
The “Center of Gravity” [5] for each partition is 
computed. The local center of gravity (Xcg, Ycg) is 
found by determining the center of gravity for each 
partition. The distance between the local center of 
gravity and the whole center of gravity of the 
number is found, and the distance is normalized by 
dividing the distance by the width of the number. 
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3.2 Connectivity 
The connectivity between segments adjacent to each 
other in horizontal and vertical directions is 
determined. Connectivity between segments is 
represented by a ‘1’ and no connectivity is 
represented by a ‘0’. Image is thinned and 
partitioned as shown in Fig.3. 
 

(1) 

(2) 



 
Fig.3. Connectivity  
 
 
3.3 Extreme Points 
The horizontal mid-point of the character image 
along with the extreme left and right points in each 
partition is calculated. If the extreme point [6] is on 
the left side, then a negative sign is introduced. Then 
the distance between extreme points and the 
midpoint is calculated and normalized by dividing it 
with the width. 
 
 
3.4 Number of Tips 
Characters are thinned. For every black pixel, it is 
checked whether it has more than one black 
neighboring black pixel. If it has only one black 
neighboring pixel, it is noted as tip. The number of 
tips [6] in each partition is stored. 
 
 
3.5 Gradients 
The gradient map of each partition is determined to 
find the local contour variations. Then the gradient 
angles are quantized. The gradient angle is 
determined using the Sobel masks shown in fig.4. 

 
Fig.4. Sobel Masks 
 
The Sobel Operator for horizontal component is  
 
Dx (i,j) = I(i-1,j+1) + 2I(i,j+1) + I(i+1,j+1) 
              - I(i-1,j-1) - 2I(i,j-1) - I(i+1,j-1) 
 
 and the Sobel Operator for vertical component is 
 
Dy (i,j) = I(i-1,j-1) + 2I(i-1,j) + I(i-1,j-1) 
             - I(i+1,j-1)- 2I(i+1,j) - I(i+1,j+1) 
 

     The angle of the edge pixels is then calculated 
using the formula 
 
Theta (i,j) = Arc Tan ( Dy(i,j) /Dx(i,j) ) 
 
     Quantizing gradient directions into a small 
number (K) of ranges aids in the generation of fixed 
number of features. For example, we can set 12 
ranges (bins) : 0o-30o, 30o-60o, 60o-90o…….. 330o-
360o.   
 
 
3.6 Wavelets 
The image is first normalized to size N*N pixels, 
where N = 2K. The Haar or Daubechies’s kernels are 
applied recursively (2–levels). At each level, 4 
quadrants are available. The top-left is decomposed 
recursively as shown in the figure below.  
 

 
Fig.5. (a) Original Image, (b) Wavelets 
 
     Each sub-image is partitioned into m*m blocks. 
The 1st and 2nd Moments [7] are computed for each 
block as follows: 
 
1st Moment: 
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2nd Moment: 
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These moments are stored in the feature vector. 
 
 
3.7 String Distance Measurement 
First, the image is thinned. Row by row, two 
successive pixel rows are considered. The distance 
‘S’ between the current black pixel (Bi) and the next 
row black pixel (Bi+1) is calculated. All the distances 
for a total of k rows are summed up to compute the 
string distance measurement (SD) [8]. 
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(7) 

(6) 
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     “String Line Measurement” (SLIM) is also added 
to differentiate the horizontal and vertical lines. If 
the line is horizontal or vertical, then SLIM is set to 
one. The final equation is: 
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     SDM for each partition is stored in to the feature 
vector.  
 
 
3.8 Angular Moments 
The image is partitioned with respect to center of 
gravity. Then the three Moments [9] (mass, distance 
and standard deviation) are calculated for each 
partition. 
 

 
 
Fig.6. Angular Partitions 
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     Summation goes over the black pixels of the 
partition. The normalizing factor M, R and S are the 
summation (Moments) over the whole image. 
 
 

4   Classifications 
A classifier that is trained on a labeled data set can 
be used for future prediction of class labels for 
unknown instances. 
     The classifier predicts a class label, wu, for an 
unknown feature vector ‘y’ from a discrete set of 
previously learned labels {w1, w2 … wn}. It can be 
shown that to minimize classification errors, one 
should assign the example to the class with the 
largest posterior probability P(wi | y). This is known 
as the maximum aposteriori rule [10], and is the best 
any classifier can do. So, the job of the classifier is 
to estimate P(wi | y) from the unknown data set.  
     Training a classifier can be time consuming and 
require significant amounts of memory, especially 
for large data sets.  
 
 
4.1 K – Nearest Neighbor Classifiers 
The K Nearest Neighbor (kNN) algorithm [11] [12] 
[13] predicts the outcome y for an unknown wu by 
finding the k labeled training data set nearest to wu 
within a pre-classified dataset D. It classifies wu 
using the maximum vote of the nearest ‘k’ 
neighbors. The kNN method is a powerful technique 
that can be used to generate highly nonlinear 
classifications with limited data.  
     Normally, the “closeness” is measured by 
Euclidean distance. For two tuples, X = <x1, x2, x3 
… xn-1> and Y = y1, y2, y3… yn-1>, the Euclidian 
distance is  
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Fig.7. K Nearest Neighbor 
 
     The main limitations of kNN are storage 
requirements (since the entire dataset needs to be 
available for matching) and the computational cost 
(since for each unknown data, the distance to all 
training samples needs to be computed). These 
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limitations, however, can be overcome by editing 
the training set [14], and generating a subset of 
prototypes. The kNN algorithm is extremely 
sensitive to the dimension of the features. So, 
special attention must be paid to the scaling of each 
feature dimension. 
 
 
5   Combining Recognizers 
The “confusion matrix”, C, of each recognizer on a 
training set of data is used as indicators of the 
recognizers performance. C is an M × (MK) matrix, 
for M classes and K recognizers. From the matrix C, 
the row sum Cij is calculated, which gives the total 
number of samples belonging to class ‘i’. Column 
sum Cij gives the total number of samples that are 
assigned a class pattern ‘j’. 
     The conditional probability [15] that a pattern, x, 
actually belongs to class ‘i’, given that the 
recognizers classify it as pattern ‘j’, can be estimated 
as 
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     The class ‘i’ with the maximum probability value 
is the correct output. A two class problem with three 
recognizers produces a 2 x 8 matrix as follows: 
 

Fig.8. Confusion Matrix 
 
     The row values are the input, and the column 
values are the outputs of the 3 recognizers i, j, k 
respectively. 
So,  
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     By using these probability values, the correct 
output class ‘i’ (having the maximum conditional 
probability value) can be determined, given that the 
recognizers classify it as pattern ‘j’. 
 
 
6   Conclusions 
Recognition of complex handwritten characters 
remains a great research area. By using the 
conditional probabilities to combine the multiple 
recognizers, high accuracy of recognition is 
achieved. 
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