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Abstract: The introduction of a large quantity of wind generators on the Portuguese electric grid, will produce 
the effect of having a large percentage of installed power whose production is not controllable. The 
consequence is a major difficulty to the grid operator in dealing with power availability and oscillations in the 
frequency. There is the urgent need of a reliable tool for estimating the expected value of the daily power 
produced by the wind generators in order to elaborate hourly and daily forwarding-dispatches [2] and [3]. 
Artificial neural networks (ANN) are being used as a model able to predict the average hourly wind speed. 
However most of the work applying neural networks to wind speed prediction uses Multi-Layer Perceptrons 
(MLP) or the recurrent version of them [4],[5],[6] and [7]. This work introduces Radial Basis Function 
networks (RBF) for wind speed prediction showing that this model of neural networks are more suitable for the 
task at hand, in terms of on-line decisions, and more efficient to train than MLP. The experiments are made 
with real-world data. 
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1 Introduction 
In 1994 the impact of Dispersed Generation (DG) 
are grouped according to their main characteristics, 
and the Wind Energy Conversion Systems (WECS) 
as power generation units are classified as 
intermittent sources that can not be used for the 
spinning reserve due to its uncertainty in 
availability, subjected to prediction but with low 
reliability level [1]. 
 
The portuguese government intends until 2010 to 
foment the installation of renewable energy sources 
power plants [2, 3]. The power installed in WECS 
is expected to increase from 498 MW to 3750 MW, 
also the increase of 683 MW in the hydraulic 
production is foreseen as well as the introduction of 
198 MW from other renewable sources. In 2010, 
the power installed in wind generators will reach 
23.6%, which is an important slice from the overall 
energy production system. An important task is to 
decrease the production uncertainties of these 
generation power systems. The energy resources 
produced with conventional technologies (thermal 
and hydraulic), are controllable while the wind 
resource it is not. A large percentage of installed 
power whose production is not controllable will 
induce problems to the operator of the grid, e.g. 
power availability and oscillations in the frequency, 
which will compel to the existence of an 
unnecessary power reserves with regulating ability, 
to compensate the constant fluctuations of the wind 
values. 

 
Figure 1 presents an example of the hourly average 
values of wind collected in a meteorological station 
at Faro. We may observe that in 24 hours the 
difference between the maximum and minimum 
value of wind speed measured is 8.8 ms-1.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 – Average wind speed in Faro - 5th January 2004. 
 
The relation between the values of the wind 
measured and the generated power is given as an 
example for the wind generator model ENERCON 
E33-335 kW, in figure 2 which presents the output 
power curve supplied by the manufacturer. 
Between the values of cut-in speed and rated wind 
speed, the power supplied for the wind generator 
can be determined by (1), i.e. the value of the 
power varies with the cube of the speed of the 
wind. 
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Fig.2 – ENERCON E33. Output power curve. 
 
Applying the power characteristic indicated in 
figure 2 to the day presented in figure 1, the 
minimum and maximum values of power 0 kW and 
254.2 kW are obtained respectively.  
 
As a consequence the grid operator must have an 
idea of the expected value of the daily power 
produced by the wind generators, to elaborate 
hourly and daily forwarding-dispatches. Artificial 
neural networks (ANN) are being used as a model 
able to predict the average hourly wind speed. 
However most of the work applying neural 
networks to wind speed prediction uses Multi-
Layer Perceptrons (MLP) or the recurrent version 
of them [4],[5],[6] and [7]. This work introduces 
Radial Basis Function networks (RBF) for wind 
speed prediction showing that this model of neural 
networks is more suitable for the task at hand, in 
terms of on-line decisions, and more efficient to 
train than MLP. 
 
 
 2 Neural Networks 
In this work, artificial neural networks are used to 
develop a forecasting tool that predicts the local 
short-term wind speed. Neural networks are very 
efficient to solve many sorts of problems, because 
it does not require previous knowledge on the 
system to be predicted and has a large tolerance to 
noise. 
 
An artificial neural network is an information-
processing system inspired on some characteristics 
of the biological neural networks. It consists on a 
large number of simple processing elements called 
neurons, units, or nodes. Each neuron is connected 
to other neurons by means of direct communication 
links, each with an associated weight. The weights 

represent information being used by the net to solve 
a problem. Neural nets can be applied to a wide 
variety of problems such as storing and recalling 
data of patterns, classifying patterns, performing 
general mappings from input patterns to output 
patterns, grouping similar patterns, or finding 
solutions to constrained optimization problems. 
Each neuron as an internal state called its activation 
or activity level, which is a function of the inputs it 
as received. Typically, a neuron sends is activation 
as a signal to several other neurons. It is important 
to note that a neuron can send only one signal at a 
time, although that signal is broadcast to several 
other neurons [8]. 
 
Artificial neural networks have been developed as 
generalizations of mathematical models of human 
cognition or neural biology, based on assumptions 
that: 
 
- Information processing occurs at many simple 
elements called neurons; 
- Signals are passed between neurons over 
connection links; 
- Each connection link has an associated weight, 
which in a typical neural net, multiplies the signal 
transmitted; 
- Each neuron applies an activation function 
(usually nonlinear) to its input (sum of weighted 
input signals) to compute the output signal. 
 
A neural network is characterized by the type of 
connections between the neurons (called its 
architecture), its method of determining the 
weights of the connections (called training, or 
learning algorithm), and its activation function. 
Supervised neural networks are networks where the 
training is characterized by the presentation of pairs 
of input-desired output patterns. The two most used 
supervised neural networks are multi-layer 
perceptrons (MLP) and radial basis function 
networks (RBFN). 
 
 
2.1 Multi-layer Perceptrons 
Essentially, multi-layer perceptrons are parametric 
regression models, wich are not only non-linear in 
the input variables but also in the parameters to be 
estimated (weights of the connections). In this work 
we consider MLPs with p inputs, m processing 
units (in a single hidden layer) and a single (scalar) 
output. The corresponding mathematical structure 
can be compactly written as: 
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We have chosen a simple hyperbolic tangent 
function as the activation function for the 
processing units while, for the output unit, no 
transformation is applied: 
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Therefore, the output is simply a linear weighted 
combination of the outputs of the processing units. 
The parameters are estimated with the 
backpropagation algorithm as described in [10]. 
 
 
2.2 Radial Basis Function Networks 
Radial Basis Function Networks (RBFN) are also 
non-linear regression parametric models. Although 
being non-linear in the inputs, they are linear in the 
parameters to be estimated. Specifically, we have 
the parametric model  
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where the regressors ku  are: 
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We have to estimate 1m +  parameters, Ow , and 
prespecify the values for ( 1)m p⋅ +  scalar hyper-
parameters, including m  RBF centers, { }ic , which 
are p-dimensional, and the corresponding m  RBF 
widths, { }iσ . Several heuristics and adaptive 
procedures have been suggested in the literature to 
choose the centers and the widths. One of the most 
used consists in applying clustering techniques, as 
the k-means algorithm [9], and taking the clusters 
centers for the RBF centers. After we optimize a 
fixed value for σ , equal for all units. One faces a 
two-dimensional search problem, for the 
optimization of m  and σ  
 

 
2.3 Artificial Neural Networks for time-
series prediction 
Neural networks have been widely applied as 
predictive nonlinear models for time-series 
prediction, { } 1,...,k k N

y
=

, usually according to an 
autoregressive (single or multi-step ahead) input-
output setup: 
 
( ) ( )1 1 1,..., , ,...,k p k k k k qy y y y y− + − + +.  
 
One of the first questions to be decided is the 
number of values to be present to the network 
containing enough information to describe the 
value to be predicted. The data set used in this work 
corresponds to the hourly average values of wind 
speed during the years of 2003 and 2004 in Faro. 
With the software PEST – Forecast 6.0, the 
correlations were computed between the values at 
instant k and past observations (values at instant k-
p+1). In figure 3 the observed correlations are 
shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3– Coefficients of linear correlation. 
 
Considering the correlation coefficients it was 
decided to use the 1 14p + =  previous values to 
predict the next one. Through a 15 values sliding 
window the original available values of wind data 
set were transformed into a set of patterns, being 
the input patterns defined by 14 consecutive values, 

( )13 12, ,...,k k kX x x x− −= , and the output pattern the 

wind value to be predicted, 1kY x += . 
 
 
3 The advantage in using RBFNs 
Although many researches use Neural Networks for 
the prediction of wind speed, and for our 
knowledge, there is no reference for the use of 
RBFs. All the references analysed described the 
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application of neural networks to wind speed 
prediction with Multi-Layer Perceptrons (MLP) or 
the recurrent version of them. Since the dynamic in 
the wind speed time series is non-stationary, the 
results obtain with MLPs are not very enthusiastic. 
This as been confirm by the paper [10] where the 
authors of this work applied the use of MLP to real 
data of wind speed obtained in a meteorological 
station at Faro, Portugal. We believe that an on-line 
learning approach where the neural network 
parameters are recursively estimated over time, 
allowing the network to adapt it self to the new 
dynamics is a more suitable approach for this kind 
of problem. MLPs are trained with backpropagation 
witch is a gradient-based procedure with efficiency 
problems associated and with the possibility to 
stuck in local minimums of the cost function. We 
should note as well that it also lacks the possibility 
of recursive estimation procedures. If new 
observations of the series become available, one is 
led to retrain the entire neural network. On one 
hand, since RBFN are linear in the parameters to be 
estimated the coast function only has one minimum 
and it can be determined directly and analytically. 
One the other hand when new observations are 
available the parameters may be reestimated using 
online learning for recursive  
 
 
3.1 Recursive estimation 
Recursive estimation is very important when 
dealing with very large data sets, or when dealing 
with nonstationary time series, or more generally, 
when data collection is made online and we need to 
estimate the model parameters at the same time the 
data is being observed. Since a RBFN is, indeed, a 
model linear in the parameters, it is straightforward 
to use recursive estimations methods for the 
training task, such as the Recursive Least Squares 
(RLS) algorithm [9,10]. This an efficient way of 
continuously estimating the linear parameters, 
asymptotically equivalent to the optimal Least 
Square solution. The updating of the parameters 
when a new observation becomes available 
depends upon the one-step-ahead predictions 
errors, 1 ˆ T

k k kk ke y− = − w u  and the algorithm gain 

vectors, kk : 
 

1 1ˆ ˆk k k k ke+ −= +w w k    (6) 
 
where, 
 

1 1/(1 )T
k k k k k k− −= +k P u u P u   (7) 

 
and 
 

1 1
T

k k k k k− −= −P P k u P    (8)  
 
In [13] we have a complete description of the entire 
RLS algorithm and its application to the training of 
neural networks and forecasting problems. 
 
 
4. Application 
We designed an experiment to illustrate the benefit 
of recursive estimation in wind speed prediction 
and consequently the advantage to use RBFNs 
instead of MLPs. We defined a training set with the 
first 1000 observations of wind speed and a 
validation set with the next 250. We trained a 
RBFN with 150 units in the hidden layer. The train 
consisted in two stages: 
In the first stage we determined the unit’s centers 
{ }ic , by using the k-means clustering algorithm in 
the training and validation set; 
In the second stage we estimated the output weights 
with the pseudo-inverse matrix computation. 
By repeating the procedure and performing an one 
dimensional search we optimized the common 
unit’s width, { }σ  trough cross-validation between 
the training and validation set. 
The others 15800 observations defined the testing 
set where we used the trained network to predict 
the wind speed and compare the estimatons with 
the real values.  
 
 
 
 
 
 
 
 
 
 
 
Fig.4 – Last 20 observations of wind speed and 
predictions produced by the RBFN. 
 
In figure 4 we may observe the values of last the 20 
real observations in the test set and the 
corresponding estimations provided by the RBFN. 
The mean square error in the entire test set was 
1,84 ms-1. 
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A second experiment was performed where the 
network at the same time that was computing the 
estimations, performed recursive estimation using 
the RLS algorithm. 
 
The mean square error in the test set with the 
recursive estimation was 1,57 ms-1. In figure 5 we 
may observe the absolute errors in the wind speed 
prediction when we used recursive estimation 
compared with the situation without recursive 
estimation. 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 – Absolute value errors for the last 20 observations 
of wind speed with and without recursive estimation. 
 
 
4. Conclusion 
Artificial neural networks are a tool to take into 
account for the forecast of the speed of the wind 
when it is intended to have an estimate of the 
average speed of the wind for the following hour. 
Most of the researchers using neural networks for 
this task use multi-layer perceptrons or the 
recurrent version of them. This work presented 
radial basis functions networks as a neural model 
more suitable for this kind of problem. We have 
shown that the possibility to perform recursive 
estimation is a major advantage for the RBFN and 
we have applied this method to a real data set. 
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