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Abstract: - An acoustic beamformer is implemented in LabVIEW on a PC.  The two-microphone algorithm 
acts as a virtual instrument and is able to make real-time measurements and graphical displays which would be 
cumberson on a DSP processor. A robust voice-activity detector is used based on time-difference of arrival 
and the instrument is able to reduce non-stationary background noise from a radio by up to 20dB. This work is 
intended as a prototype for later implementation on DSP devices and to explore the limitations and 
applications of acoustic beamforming. 
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1   Introduction 
The beamforming problem  is a topic which has 
been studied for some thirty years and has 
application to such areas as communications [1], 
hearing aids [2], speech-recognition [3] robotics [4] 
and hands-free telephony [5]. The problem 
considered here is to use a real-time beamformer to 
reduce the effects of noise on a speech signal. If the 
noise can be isolated from the speech then a two 
microphone approach [6]  can be used with one 
microphone near the desired speech and a second 
microphone near thenoise source. The resulting 
adaptive filter is updated using the least-mean-
squares algorithm (LMS) [7]. This approach is only 
successful if the speech signal is far enough away 
from the noise so that elements of the speech are not 
picked up by the noise microphone. In fact good 
coherence is required for the algorithm to work and 
this necessitates the microphones to be close 
together whilst they also need to be far apart so that 
the signal is not picked up by the noise microphone 
and subsequently cancelled along with the 
noise.There may be certain environments where this 
approach works but in many realistic real-world 
situations it is recognised that other more refined 
methods are required.  
A better approach is to keep the two (or more) 
microphones close together and update the LMS 
algorithm only during noise and to freeze the LMS 
algorithm otherwise and keep the last weight vector 
updated during noise alone. Although this technique 
overcomes the previous problems encountered 
above, this improved method now requires a voice-
activity detector (VAD). Should the VAD fail to 
register speech when it occurs then this approach 

will treat any speech like noise and cancel it too. 
Therefore the essence of good cancellation when the 
microphones are close together is that of a robust 
VAD. The particular type of beamformer used here 
is a modified version of that of  Griffiths and Jim 
[1]. An improved version of this work has been 
studied by Van Compernolle [8] where two LMS 
algorithms are used (for two microphones). The first 
LMS is updated only during speech and acts as an 
adaptive beam-steering filter whilst the second LMS 
is updated only during the noise and acts as the 
filtering algorithm. Of course the true speech is 
never isolated from the noise otherwise there would 
be no filtering problem in the first place but rather 
the noise power of the speech is assumed to be 
greater than that of the noise and this activates the 
steering algorithm. This particular algorithm has 
been applied to the hearing impared with some 
encouraging results [9]. 
 
2   The beamforming algorithm. 
Consider the switching algorithm originated by Van 
Compernolle and Leuven. A block diagram of the 
particular case of two microphone input is shown in 
Fig. 1 below. 

  
Figure 1. An adaptive beamformer. 
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The idea of having two rather than one LMS 
algorithm is to provide a signal-free noise reference 
for the LMS2 algorithm illustrated in Fig. 1. The 
error of LMS1 feeds into the noise reference of 
LMS2. If LMS1 is steered towards the speaker with 
the noise coming from a different direction than the 
speech component appearing in the reference should 
be minimal. The traditional approach has been to 
either talk directly in front of the two microphones 
and hope that the delay to each microphone is small 
and similar (hence the difference will be zero) [10] 
or to calculate the time-delay to each microphone 
and compensate for the time-difference of arrival 
(TDOA). The trouble with the latter approach is that 
rarely if at all is the acoustic transfer function of the 
speech to each microphone a pure time-delay. In a 
real environment there are reverberations and the 
acoustic transfer function will be something more 
complex, a pure delay  plus  a (possible) non-
minimum phase transfer function. This is why the 
LMS1 steering algorithm is included, to compensate 
for the transfer function difference of arrival instead 
of the TDOA. The two time-delays (Delay1 and 2)  
are to provide physical realisability when there is the 
possibility of an uncausal solution if the 
microphones are in the wrong position with respect 
to each other or with non-minimum phase acoustic 
transfer functions. 
The popular LMS algorithm has trouble with 
stability for many real-time applications where the 
signal and noise are non-stationary. For an error 
signal, primary signal, weight vector and regression 
vector  (composed of past values of reference noise 
signal), ordinary LMS is given by [7]. 
  T

k k k ke s W X= −     (1) 
 
  1k k k kW W X e+ = +µ    (2) 
The problem is that the step size µ   will often be 
either too large or too small. Too small and the 
convergence is too slow, too large and there is a 
good chance of instability for large dynamic ranges. 
This is because for convergence in the mean-square   

21/µ < σ where 2σ   is the variance of the reference 
noise signal [11] which more than often is non-
stationary with a wide dynamic range.  The modified 
LMS algorithm known as normalised LMS does not 
suffer from any of these problems in real-time. 
Normalised LMS is given by (1), and (2) is modified 
accordingly to be 
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where δ is a small positive constant that prevents 
division by zero for small kX .The algorithm 
converges in the mean-square provided 0<µ<2. 
Good real-time results were obtained for 0.5µ =  
with no instability problems. In order for the 
algirithm to steer towards the desired speech, LMS1 
must be adapted during periods of active speech 
whilst LMS2 must be adapted during periods of 
noise with no speech present. This leads to the 
inclusion of a voice-activity detector. 
 
3 The voice-activity detector (VAD) 
The VAD is crucial to the overall performance of 
the beamformer. For instance if LMS2 is updated 
during an instance of speech rather than noise then 
the speech will be attenuated along with the 
background noise. The VAD must therefore  be 
capable of switching on rapidly when speech occurs 
and switching off just as rapidly during the noise 
periods. Probably one of the simplest ways to do this 
is to work with thresholds of energy or power and to 
make a decision by trial and error. With such an 
approach the VAD needs to know what the ambient 
background noise level is in the first place so that 
any speech signal will be flagged if it has a power 
much greater than the noise. Of course such an 
approach will only work for positive signal to noise 
ratios but may well be sufficient for a great many 
applications. An alternative more robust approach 
would be to confine the speech to a particular area 
directly in front of the two microphones and to 
assume that any noise comes from a different 
direction based on time-delay estimation and 
coherence[12]. This latter approach is used here. 
The following algorithm is based on the generalised 
cross correlation method (GCC) and is a robust 
method of estimating time-delay. The time-
difference of arrival (TDOA) is calculated using the 
GCC and this used to determine whether desired 
speech is present directly in front of the two 
microphones. It is assumed that in a great many 
applications that the desired speech will be in a zone 
directly in front of the microphones and that the 
noise will be outside of this zone. Hence if the 
TDOA is calculated to be greater than a fixed 
amount (depending on chosen the size of the zone) 
then the signal is assumed to be noise, otherwise 
speech. The zone can be shown to be outside of a 
two-sheet hyperboloid.[12].To avoid problems with 
reverberation (eg if a noise source outside of the 
zone reflects back off a wall so that it appears in the 
zone itself giving a false reading) the magnitude-
squared coherence function (MSC)  is used. It is 
known for instance that a reverberant signal has 
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smaller coherence than a direct-path signal. The 
condition for desired speech in the VAD is therefore 
that the TDOA be less than some pre-defined value 
(normally 5 samples)  and that the averaged 
coherence be greater than some fixed amount 
(normally 0.3). 
 The setup of the VAD is shown in Fig.2 below. The 
two cone-like halves of the Hyperboloid represent 
regions where the delay is a constant. The space in 
between these ‘cones’ is the active zone where 
desired speech is presented. This extends behind the 
microphones as well as above and below but 
presents no real problem as in a confined enclosure 
only the forward section will be active. Such an 
enclosure could look very much like a telephone 
kiosk for example and would have a foam type 
backing to reduce reverberations. 
 

 
 

Figure 2. Top: Showing active zone 
where desired speech is presented. 

 
VAD Algorithm 
 
Step 1: At each FFT frame index i=1,2,3,… assign  
the two time-domain  vectors from each microphone 

as Tx = [n , n , ...n ]k 0 1 N-1 , Ty = [m , m , ...m ]k 0 1 N-1
  
with corresponding frequency vectors obtained from 
the FFT as  jX (i) and jY (i) , j=0,1,2…N-1. 
respectively. It is assumed that the time-domain 
signals have been suitably windowed before 
applying the FFT algorithm. 
Estimate the spectra (periodogram estimates)  of the 
signals from each of the two microphones: 
  *

nn
ˆ ˆS (i) S(i 1) (1 )X(i)X (i)= β − + −β  (4) 

 
  *

mm
ˆ ˆS (i) S(i 1) (1 )Y(i)Y (i)= β − + −β  (5) 

(4) and (5) is a method of smoothly updating the 
spectrum recursively at each FFT frame rather than 
a straight batch method. In the above equation ‘*’ 
represents complex conjugate and 0 1≤ β <   is a 
forgetting factor. For the results used in this paper 

0.5β =   was used as a compromise between fast 
tracking and smoothed periodograms. If β  is 
chosen to be too large then the tracking ability of the 
GCC time-delay estimator is severely compromised. 
Some experimentation is required depending on the 
application. 
 
Estimate the cross-spectrum (cross-periodogram) 
from: 
  *

nm
ˆ ˆS (i) S(i 1) (1 )X(i)Y (i)= β − + −β  (6) 

 
Step2 :Estimate the MSC at each FFT frame from: 
 

  

2

nm2
nm

nn mm

Ŝ (i)
ˆ (i) ˆ ˆS (i)S (i)
γ =   (7) 

 
and at each frame i, average over frequency k the 
MSC thus 
 
  2 2

nm nm
k

ˆ(i) (i)γ = γ∑                         (8) 

Step 3: Estimate the term  g (i)ψ from 
 

  
2

nm
g 2

nm nm

ˆ (i)
(i)

ˆ ˆS (i) [1 (i) ]

γ
ψ =

− γ
            (9) 

Step 4: Estimate the time-difference of arrival d 
from the inverse FFT of the generalised  cross-
correlation: 
 
  g 1

nm nm
ˆR̂ (d) max F { (i)S (i)}−= Ψ          (10) 

 
That is, the maximum of the inverse FFT 
of nm

ˆ(i)S (i)Ψ  is the time-delay in samples. A 
positive delay can be inferred if the maximum 
occurs in the region  0<d<N/2-1 ie the first half of 
the inverse FFT and a negative delay if the 
maximum occurs in the upper half of the inverse 
FFT. 
Valid speech is then assumed when for some zone-
limit integer delay  maxd  

            Estimated delay maxd≤                             (11) 
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And when the averaged MSC is greater than the 
MSC threshold 
 
                         

2
nm min(i) Cγ ≥                        (12)

          
For the experiments carried out in this paper a 
sampling interval of 22050Hz was used so that each 
sample interval corresponds to 45.35 sµ .Typically   

maxd was chosen to be no more than 5 samples and   

minC was chosen as  0.3.   
 
4 The design and performance of the 
virtual instrument 
The  beamformer virtual instrument is written using 
the programming language ‘g’ (LabVIEW data-
flow). LabVIEW is particularly suited to this sort of 
application as it was designed specifically for real-
time instrumentation applications. The speech 
signals were sampled using an external USB sound 
card (for lower noise) though any sound card could 
have been used. The microphones used were 30cm 
apart and were both omni-directional magnetic 
microphones which needed further pre-amplification 
before feeding to the sound card. The sampling 
frequency was chosen to be 22050Hz with 16 
bits/channel. This gave quite a high quality 
performance with a Nyquist frequency bandwidth of 
around 11kHz. In all of the tests the beamsteering 
LMS1 used 100 weights with a delay of 5 whereas 
the main noise-cancelling LMS2 used 600 weights 
with a delay of 50.(see Fig 1). 
 The front panel shown in Fig.3 of the beamformer 
virtual instrument consists of various displays and 
switches used to evaluate the algorithm. The front 
panel is too big to show in any level of detail but 
individual displays will be shown to illustrate the 
various functions. 
 

 
 

Figure 3. Front panel of virtual 
beamformer. 

 

 For instance a graph of one of the microphone 
signals versus time is available and below it, the 
real-time spectrum of the noisy or the enhanced 
speech. The ability to switch on and off the 
beamformer was crucial so as to see the dB 
improvement. The error for LMS2 is the enhanced 
speech signal and was fed to the sound card so that 
the results could also be heard in real-time (with a 
short latency).Experiments were carried out in a 
typical office environment 4m by 4m. In all 
experiments a word had to be spoken first so as to 
steer the beam in the ‘look’ direction which in this 
instance was directly in front of the micophones. 
When the beamformer was switched on, the effect 
was quite dramatic and a comparison of the average 
spectrum before and after beamforming showed a 
reduction of the base-level noise (with no speech 
signal present, only ambient fan noise from the PC) 
right across the spectrum up to the Nyquist 
frequency. This is illustrated in Fig. 4. 

 
 

Figure 4. Top: Original spectrum of 
ambient noise,bottom:spectrum 

with beamformer. 
Frequencies of less than 2.5kHz give the best 
performance with reductions of up to 10dB or more 
at some frequencies and as much as 30dB reduction 
at 400Hz. The area under the spectra gives rise to 
the total average power of the noise and can be 
measured in real-time using recursive variance 
estimation and a forgetting factor. Assuming a 
signal  which is being measured has zero dc (which 
is the normal case with audio signals) then its 
variance can be calculated recursively from results 
in [13] and a dB meter (shown in Fig 3) can be used 
to measure overall dB noise reduction. 
A radio 1m away was used to provide background 
noise. Fig.5 illustrates typical results that were 
obtained. The words ‘one’,’two’,three’ were spoken 
and repeated with the beamformer turned on. In Fig. 
5 the beamformer was switched on at around sample 
no 100,0000 (mid way on the graph). The VAD flag 
can be seen around the desired words and the 
background speech is attenuated by around  10dB 
without any noticeable reduction in quality of the 
desired speech. 

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Robotics and Automation, Madrid, Spain, February 15-17, 2006 (pp335-340)



  
Figure 5. Performance without and 
with adaptive beamformer. (speech 

+ speech).VAD flag also shown. 
 

Finally, to show the tracking ability of the 
beamformer a radio was presented some half a metre 
directly in the active zone of the VAD and then 
moved quickly to the left of the zone at a similar 
distance. The radio noise was attenuated as shown 
midway through the time axis of Fig 6 below. 

 
Figure 6. Performance with a radio 
in and out of the VAD active  zone. 
 

This shows a dramatic attenuation when measured 
of approximately 9.6dB. Similarly the spectrum is 
shown for the same experiment in Fig.7. The top 
graph is the average spectral density within the 
VAD active zone and the bottom outside of this 
zone. 

 
 

Figure 7. Spectral performance with 
a radio moving  in and out of the 

VAD zone. 
The reduction in noise power is apparent right 
across the spectrum and  at a good many frequencies 
it is as high as 20dB attenuation. However, the dB 
meter indicated an average overall dB reduction in 
noise of around 12dB for most applications. 
 
 
 
 

5   Conclusion 
An acoustic two-microphone beamformer has been 
implemented in real-time as a virtual instrument. In 
this way the algorithm, which is an extended 
switching Griffiths-Jim beamformer can be closely 
examined. The performance was studied with speech 
and speech plus interfering noise. The combination 
of the robust VAD using GCC and the dual NLMS 
approach gives rise to a powerful method for real-
time noise-reduction evaluation. 
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