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Abstract: - This paper present a texture compression technique for still images based on the wavelet transform 
and the auto-regressive (AR) texture model in order to increase the compression ratio with a minimal loss of 
image quality. First the influences of the initial condition and the order of an AR model on the resulting texture 
model are investigated to serve as a theoretical foundation for the proposed approach. To further the 
compression ratio, this paper also presents a texture compressing technique using an auto-regressive texture 
model with compressed initial conditions. Results show that the AR model is better than a random texture model 
when the order of the AR model is adequately chosen, and compression of the initial conditions in the AR model 
can significantly improve the compression ratio without a noticeable loss of image quality. 
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1   Introduction 
Due to the unceasing demand for a larger and larger 
compression ratio with satisfactory image quality, 
texture modeling has gained increasing interest from 
researchers in the field of image compression [1-4]. 
    In an early attempt to combine the wavelet 
compression with a texture model [5], an image is 
first partitioned into texture and non-texture regions. 
The AR model is then applied to represent the 
information in the medium and high frequency 
ranges of texture regions, while the rest of the image 
is compressed using the traditional wavelet codec. 
The approach suffers from two drawback: (1)The 
boundaries of texture and non-texture regions are 
usually highly irregular, not to mentioned that it is 
not always easy to distinguish ‘texture regions’ from 
‘non-texture regions’. (2) Medium and high 
frequency ranges of an image usually contain 
non-texture information (such as edges). 
    An alternative approach by Debure and Kubota [6] 
has an entirely different view of ‘texture’. In this 
approach, ‘texture’ is perceived as the difference 
between the original image and a compressed image, 
to be referred to as the ‘residual image’ in this paper, 
and the AR model is applied to represent the residual 
image for the sake of improvng image quality with a 
minimal cost of data bits. However, this approach 
does not gain much in the compression ratio. 

Most recently, Nadenau and his colleagues [7] 
treat the information contained on the least 
significant bit planes as stochastic texture while 

applying the conventional wavelet codec to compress 
information on the other bit planes.  

However, a stochastic texture model assuming 
uniformly distributed texture imposes a very strong 
restriction so that only the three least significant bit 
planes can be treated as texture. To compress more 
bit planes in a texture model, we need to resort to 
texture modeling technqiues that can deals with 
non-uniform distribution of texture.  
     Among various texture models, such as those in 
review papers [8-9], the auto-regressive (AR) model 
can better handle the non-uniform distribution of 
texture through its initial conditions, hence it shows 
very attractive performance in texture modeling [10]. 
     Unfortunately, most existing techniques for AR 
texture models and wavelet compression with an AR 
texture model suffer from two major drawbacks: (1) 
It has been suggested that the order of an AR model 
can be chosen based on an optimization criterion 
[11-13], however, there is lack of explicit research 
reports on the influences of the initial condition and 
the order of an AR model on it performance in texture 
modeling. (2)The initial condition occupies the 
largest portion of bit-rate in an AR model, usually 
exceeds 10 times more than model parameters, but it 
seems that there has been no report on how and when 
the initial condition can be further compressed. 
    These two issues will be addressed in this paper 
and the proposed technique to push forward the 
existing limit of compression ratios.  
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2 The Influences of the Order and 
Initial Conditions of an AR Model 

In this section we shall first investigate the influence 
of the order of an AR model on the modeling 
accuracy, followed by the investigations into the 
effect of initial conditions before proposing a 
technique for the compression of initial conditions of 
a texture image in an AR model. Consider the 
following AR model 

0 0

( , ) ( , ) ( , )
m n

st
s t

y i j y i s j t u i jα
= =

= − − +∑∑       (1)

 

 

where m and n represent the order of the model while 
the initial conditions consists of the first m rows and n 
columns, 0s t= ≠ , stα  is a model parameter solved 
from a least square problem to minimize the cost 
function [14] 
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( , )u i j  is a zero mean white Gaussian noise with and a 
standard deviation σ  to model the following 
difference  [14] 
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    It is shown in [15] that the solution to Eq. (1) 
consists of two parts, a homogeneous solution 

( , )Hy i j  resulting from the least square problem 
given in Eq. (2) and a particular solution ( , )Py i j  due 
to the existence of  the white Gaussian noise ( , )u i j . 
    To explore the influence of the order and the initial 
condition on the AR model, the following 
discussions will focus on a 1D signal for simplicity 
but without the loss of generality. For a general 2D 
case, please refer to [15]. Let the AR model of a 1D 
discrete system be  
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whose solution consists of a homogeneous solution 
defined by  
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and a noise driven particular solution ( )Py i so that 
( ) ( ) ( )H Py i y i y i= +                    (6) 

For the convenience of discussions, let the 
characteristic equation of this system be given by  
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that has no repeated roots, and sj
s sr r e θβ= , s = 1, 

2, …, m, be a root of Eq. (7), which is also a pole of 

the discrete system given in Eq. (4), then the 
homogeneous solution to Eq. (4) is given by [15] 
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where sc , s = 1, 2, …, m, is determined by the initial 
condition of Eq. (4), while  

( )( ) ( )
is

H sy i r                                (9) 

is the sth special solution to Eq. (4), which is 
independent of the initial condition.  
    In  the special case where the 1D signal has a 
period T such that   

( ) ( )y i y i T= −                             (10) 
where T i≤ , the special solutions given in Eq. (9) 
reduces to 
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and the corresponding homogeneous solution 
becomes 
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When the order m T= , the homogeneous solution 
( )Hy i  given in Eq. (12) becomes the Discrete 

Fourier Transform (DFT) of a discrete signal with a 
period T, and can exactly represent the later. 
However, if the order m<T, the homogeneous 
solution ( )Hy i  given in Eq. (12) may fail to exactly 
represent some discrete signals with a period T. 
    It is therefore suggested that, to simulate a discrete 
periodic signal with a period of T, the minimal order 
of the AR model is i T≥ .  
   On the other hand, when the 1D signal is a random 
signal, the noise driven particular solution ( )Py i  
dominates the resultant AR model. In such a case, the 
performance of an AR model is insensitive to its 
order. 
    In most real applications, the texture is neither 
periodic nor purely random. In such a case, an AR 
model can be perceived as a linear combination of a 
homogeneous solution to approximate the periodic 
change in the intensity of a given image and a 
particular solution to approximate the random change 
in the intensity. With this notion, it is suggested that 
the order of the AR model be selected to approximate 
the periodic component of a given image.  
    Next, let us consider the influence of the initial 
condition on the resultant AR model in order to 
derive a suitable approach for compressing the initial 
condition.  
    First let us consider a periodic pattern and assume 
that the order of the AR model is sufficient to 
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represent the image. In such a case, it can be derived 
from Eq. (8) that the resultant AR model largely 
depends on the coefficients sc , s = 1, 2, …, m, in the 
homogeneous solution, which are completely 
determined by initial conditions. As a result, the 
resultant AR model is generally sensitive to initial 
conditions. In such a case, there is no room for the 
compression of initial values.  
 

      
         (a) original image        (b)AR model with exact 

initial conditions 

 
(c)AR model with approximate 

 initial conditions 
Figure 1. AR models of periodic (repeated) patterns 
 

Figure 1 compares an AR model of a repeated 
(periodic) pattern with exact initial conditions to that 
with approximate initial conditions. The original 
image shown Fig. 1(a) has a period of T = 20 in both 
vertical and horizontal directions, the AR model with 
exact initial conditions and the order of 0s = ,  

20t =  is shown in Fig. 1(b), while the AR model 
with approximate initial conditions and the same 
order is shown in Fig. 1(c), where the approximate 
initial conditions is resulted from a low order AR 
model of the exact initial condition. It is clear from 
Figs. 1(a) and 1(b) that the AR model can exactly 
describe a repeated pattern when its order is  
sufficient, and the comparison between  Figs. 1(b) 
and 1(c) confirms that a slight difference in initial 
conditions may lead to substantial difference in the 
resultant AR model when the original image is a 
repeated (periodic) pattern. 

On the other hand, when the image consists of 
purely random texture, the AR model is dominated 
by the particular solution and is therefore insensitive 
to the initial condition.  

Figure 2 compares an AR model of a random 
texture with exact initial conditions to an AR model 
with approximate initial conditions. Fig. 2(a), 2(b) 
and 2(c) show the original image, the AR model with 
exact initial conditions and the AR model whose 
initial conditions are modeled as white noise, 
respectively. It is clear from Fig. 2 that a substantial 
difference in initial conditions does not lead to 
substantial difference in the performance of the 
resultant AR model.  
 

   
  (a) Original image              (b) AR model with exact 
                                                   Initial conditions 

 
    (c)AR model with approximate 

 initial conditions 
Figure 2. AR models of random texture 

 
However, it is also clear from Fig. 2 that there is a 

noticeable difference between an image and its AR 
model unless the original image is a repeated pattern. 
Therefore, a AR model should not be applied to 
represent the whole image except minute details in 
the lower bit planes of high frequency channels, 
which are referred to as the ‘texture image’ hereafter 
in this paper. 

It is therefore suggested that, when the texture of 
an image to be represented by an AR model is closer 
to a random texture than a repeated pattern, there is a 
good chance to compress the initial conditions with 
an acceptable loss in image quality.  

This is especially true when the texture of an 
image is specifically and restrictedly referred to the 
lower bit planes in the high frequency channels of a 
wavelet transformed domain. A technique for image 
compression in the wavelet domain will therefore be 
proposed in the next section to make use of the AR 
model with compressed initial conditions for an 
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increased compression ratio without a substantial 
loss in the quality of the image. 

As regard the technique for the compression of 
initial conditions, it is suggested based on our 
experience that down sampling be adopted for 
compression (coding) and linear interpolation for 
up-sampling (decoding). The cubic interpolation is 
not recommended because it is more time consuming 
without a noticeable improvement in the resultant 
quality. The other alternative is to model the initial 
conditions into 1-dimensional white noise. 
Experiments show that both of them give similar 
results. 
 
 
3 Image Compression Using an AR 

Texture Model with Compressed 
Initial Conditions 

This section presents a technique for image 
compression in the wavelet domain using the AR 
texture model with compressed initial conditions. 
    The wavelet transform is a well developed 
technique in image compression, and has become 
standards [16-17]. Wavelet based compression is 
particularly efficient in the compression of smoothly 
varying regions of image data. It is the discontinuities 
located between the regions, along with high contrast 
textural regions, which cause large transform 
coefficients and erroneous artifacts, such as blurring 
or starring, at high compression ratios [6].  
    In theory, a homogeneous region of pixels can be 
described with a more compact representation than a 
non-homogeneous one, hence a texture oriented 
wavelet image compression scheme has been 
proposed [6] using an AR texture segmentation 
technique and an AR texture model to solve the 
aforementioned drawback of the wavelet transform 
codecs. However, as mentioned before, the ‘residual 
image’ to be modeled by the AR model is defined as 
the difference between the original image and the 
wavelet compressed image, hence it does not gain 
much in the compression ratio. Besides, the initial 
condition of the ‘residual image’ is not compressed. 
     To achieve a better compression ratio, we propose 
a wavelet transform compression technique which 
consists of the following steps: (1)First, the discrete 
wavelet transform (DWT) is applied to the original 
image; (2)The wavelet domain is divided into the 
high frequency region and the low frequency range, 
with the size of the low frequency range being only 
one fifteenth of that of the high frequency range, as is 
shown in Fig. 3; (3)Bit planes in the high frequency 
range is divided into higher bit planes and lower bit 

planes with a case dependent threshold value BT ; 
(4)Data in the high frequency region and those in 
higher planes of the low frequency region are coded 
using prevailing coding techniques, such as the 
entropy coder; (5)As an optinal step, lower bit planes 
of the high frequency region can be segmented into 
several regions with  homogeneous texture in each 
region using texture segmentation techniques such as 
that in [6]; (6)Textures in each texture region are 
compressed using the AR model, then the initial 
condition in the AR model are further compressed 
before coding. Figure 4 shows the complete flow 
chart of the present technique.  

 
Figure 3. Low and high frequency bands in the 

wavelet domain: the high frequency 
region is marked by gray color. 

 

 
Figure 4. The flow chart of the present technique 
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    Please notice that texture segmentation is optional 
because it is a computationally demanding process 
that usually results in irregular texture boundaries 
mis-matching exact texture boundaries. When this 
causes troubles to a specific application, it can be 
dropped.  
     Regarding the selection of the bit plane threshold 
value BT , our experiments show that, for a smaller 

BT , the remaining texture image is usually very close 
to a 2-D random signal which can easily be modeled 
by the AR model in which the noise drive particular 
solution dominates. On the other hand, when BT  is 
large, the remaining texture image is usually highly 
non-homogeneous. In such a case, it is usually 
advantageous to apply texture segmentation unless it 
is difficult to model the remaining texture using an 
AR model. 
    The corresponding image decoder is briefly 
described in the followings: First the compressed 
initial conditions and model parameters are used to 
reconstruct the texture image, while the compressed 
low frequency bands and higher bit planes in high 
frequency bands are reversed by using the inverse 
discrete wavelet tranform (IDWT), then the two 
images are summed up to result in the reconstructed 
image. 
 
 
4   Experiments 
Figure 6 shows the performance of the present 
approach. The bit plane threshold is 6BT = , and the 
order of the AR model is 20s t= = . Texture 
segmentation is not adopted in this example. 

Fig. 6(a) is the original image, Figs. 6(b), 6(c) 
and 6(d) are results of the present approach, where 
Fig. 6(b) uses exact initial conditions, Fig. 6(c) uses 
zero initial condition to represent an image without a 
texture model, while Fig. 6(d) uses white noise to 
compress initial conditions.  

Comparing Figs. 6(b) with 6(a) and 6(c), it is 
clear that the image with a texture model is 
significantly better than the one without. Furthermore, 
comparing Figs. 6(b) and 6(d), the image with 
compressed initial conditions is as good as the one 
with exact initial conditions.  

Regarding the compression efficiency, the 
original image is of 256 256×  pixels, the lower bit 
planes in the low frequency channels contains 
368,640 bits, corresponding to about 5.62 bits/pixel. 
The persent approach uses 2,176 bits to model the 
texture image, corresponding to about 0.03 bits/pixel. 

 
(a)Original image 

 
(b)Result of the present approach 

 
(c)Image without texture model 

 
(d)Image with AR model and exact I. C. 

Figure 6. Results of the present technique 
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The compression ratio of the texture image is quite 
attractive. However, if exact initial conditions are 
employed, then it takes 4,647 bits to model the 
texture image, almost twice the former.  

Experiments have also been performed on the 
Brodatz texture D93, Brodatz texture D105, Brodatz 
texture D104, and several other images. Most of them 
show good results similar to the one reported in this 
paper.  
      Since the present AR texture model can 
significantly increase compression ratio without 
much loss in image quality, and the compression of 
initial conditions can further improve the 
compression efficiency without a noticeable 
deterioration of image quality, we conclude that the 
present approach may be quite useful in real 
applications of lossy image compression.  
     
 
5   Conclusion 
This paper presents a technique for image 
compression in the wavelet domain using the AR 
texture model with compressed initial conditions. 
Rules of thumb have been provided as guidance for 
the selection of orders of the AR model together with 
two alternative compression techniques for 
compressing initial conditions. Experiments suggests 
that the present approach can be applied to a wide 
class of texture images, and is worthy of  further 
investigations into its limitations.  
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