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Abstract: An approach to robust control design for a nonlinear multi-input/multi-output (MIMO) plant using
linearization theory and quantitative feedback theory (QFT) is presented and applied to the design of aMIMO
nonlinear robot control system. This method is hamed Generalized Quantitative Feedback Theory (GQFT).
GQFT techniques are introduced to give a feedback control design for the plant model under the parameter
uncertainty. The QFT method for single-input/single-output (SISO) plants is used to obtain robust stability
under the given plant-parameter uncertainties. The design results demonstrate the good performance and
features of the proposed GQFT approach that may be achieved.
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1 Introduction
Many practical systems are characterized by
uncertainty which makes it difficult to maintain
good stability margins and performance properties
for the closed-loop system. There are two general
design methodologies for dealing with the effects of
uncertainty:
1. "Adaptive Control", in which the parameters of
plant or some other appropriate structure are
identified online and the information obtained is
then used to 'tune' the controller.
2. "Robust Control", which typically involves a
'worst-case' design, approaches for a family of plants
representing the uncertainty using a single fixed
controller, [12,9,15].
Quantitative feedback theory (QFT) is a robust-
control method developed during the last two
decades which deals with the effects of uncertainty
systematically. It has been successfully applied to
the design of both SISO and MIMO systems; it has
also been extended to the nonlinear and the time
varying case [1,2,3, and 6]. In comparison to other
optimization-based robust control approaches, QFT
offers a number of advantages. These include:
a. The ability to assess quantitatively the 'cost of
feedback’ [5 and 7].
b. The ability to take into account phase
information in the design process (which is lost if,
for example, singular values are used as the design
parameters).
c. The ability to provide ' design transparency’, that

is, clear tradeoff criteria between controllers
complexity and feasibility of the design objectives.
d. Note that (c) implies in practice that QFT often
results in simple controllers which are easy to
implement.
For the purpose of QFT, the feedback system is
normally described by two degrees-of-freedom
structure shown in Fig. 1. In this case R is an input,
F is prefilter transfer function, G is a cascade
compensator, and P represents a set of transfer
functions which describes area of plant-parameter
uncertainty. QFT takes into account ‘quantitative
information on the plant’s variability (uncertainty),
requirements for robust performance, tracking-
performance specifications, expected disturbance
amplitude and regquirements for its attenuation. The
output y(t) is required to track the command input
signa r(t) and to reect the external disturbances
d,(t)and d,(t), [18,19,14].
The compensator is designed so that the variations
of y(t) to the uncertainty in the plant P are within
acceptable tolerances and the effects of the
disturbances d,(t) and d,(t)on y(t) are small. The

prefilter properties of F(s) must be designed for the
desired tracking of the reference r(t).
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Fig. 1. The fundamental QFT design.
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2 Introduction To GQFT Method for
Nonlinear MIMO Systems

In designing a robust controller for MIMO nonlinear
systems, a combination of two approachesis used as
follows:

|. Designing a robust controller for SISO nonlinear
system, [8].

Il. Designing a robust controller for linear time-
invariant system.

Due to this aim, firstly, the MIMO nonlinear system
must be transformed to a set of linear time-invariant
systems furthering disturbances. Then, applying
robust controller approach (QFT) for equivaent
MIMO linear time-invariant ones, as a solution of
the MIMO nonlinear control systems will be
designed. The following example is prepared for
more understanding, [10,11,13].

Example 1: Consider a MIMO nonlinear system as

shown in Fig.2, which is formulized by a dynamic
equation as (1).

R(s) E(s) U(s) Y(s)
—"1?—" Gls) N(s) '

Fig. .2. The block diagram of aMIMO nonlinear system

Y, + Ayf + B(y1 +:I-)yz = klul o)
y,(@+Cy,) + Ey12 +Dy, =k,u,
The purposed system is supposed to be a MIMO

nonlinear case with two outputs, [yl, y2]T and two

inputs, [ul,uz]T . Furthermore, al of the initial
conditions are zero. The parameters,k, , k;, E, D
, C , B and Aae a follows

A =[0.04,0.05],B =[0.08,0.12],C =[0.08,0.12],

D =[0.81.2],E =[0.81.2],k, =[0.5,2.5],

k, =[0.5,2.5]

To design the robust controller by using QFT, the

system outputs should satisfy the following
inequality:

lyiw)—yiw)lse(w) , =12 )

iy 2
rrmrg | P95y O

The desired performance and time response
characteristics, which are smulated on Fig.3, shows
that the output deviation of first channel from

yi (s) =

y; (w)shouldn't be more than quantitative amount
of e, (w) and for the second channel deviation of the

output from y;(w) shouldn’t exceede, ().

The design procedure is as follows:
1. Transforming the nonlinear system into a linear
system considering disturbances on the system
output which satisfies below equation:
y:Nu:PN,y+y;\l,y+dN,y (4)
To meet this purpose, the Tailor extension for the
input u(t) and the output Yy(t) should be calculated

asfollows: (with regardto y,,, Y,, = 0):

ot :{um +ullt+u12t+..} )
Uyy + Uyt + Ut + ...
t+y. t2+..
y(t) :|:yll y12 . :| (6)
Yo b+ Yot™ +..

Substituting the above equations into the system
eguations, we have:
Yut 2y12t + By21 = K1u10 + K1ullt

(7)
Yo +2Y 5t + Cyp Yot + Dyt = KU,y + KUt
Then:
Yt (ZY12 + By21)t = Klulo + Klullt (8)

y21 + (2y22 + CyllyZl + Dy21)t = K2u20 + K2U21t
Where:

B
Yo = & K, ta = y%l (9)

B
u20=y21/<2 v Uy = y%z

It can be found that:

Specified g,

Specified e,
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Fig. 3. The frequency and time characteristic of the closed loop
system of e; and e,.
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Finally, the linear system can be determined as
follows

S B
P, = k, ky (11
Y
0 (s+D)
k2

Disturbance dN'y for the system output sets of a

second order plant can be determined as follows:
(Ao—Ar+1)s+or

yl(s) = 2 ’ A 2[152] ’ O-:[OSsJ]
S(s“+(o+7)s+or (12)
r=[12, yz(s)=s(sﬁﬂ, «=[095L09, A=[13

The steps of determining dN'y are asfollows:

a. Choosing the parametersA, B, C, D, E,
k,and k;, and transforming Yy, and Yy, into time -
domain functions.

b. Defining u,and u; according to (1), and
determining transfer function.

c. Determining dN’y according to (4), which
satisfies initial
anddN'y =y-Py,u.

d. Repesting the steps a, b and ¢ for all values on
A,B,C,D, E, k,and k;, and choosing upper
bounds on y,and Yy,to create sets of
couplesip, .d,,f» Which satisfy desired outputs
equations.

2. Then the system inputs can be calculated from
relation r = Gy, +u,where y, =[y;,y;]" arises

equationy =0,

from (3), and u,can be calculated choosing A,,
By: Cy» Dy, E,, K,and k;, which arethe average

amounts of A, B, C, D, E, k,and ki,
respectively.

3. According to the approach which is verified on
designing controller for MIMO systems, the
controller g, should be designed in such a way that
the first inequality from (2) would be satisfied. The
bounds and the nominal loop gain function are
shown in Fig.4. The controller transfer function is

determined as follows:
36s + 223

9737 Tgps 143

----------------------------------------------

I
%50 20 200 20 20 210 @0 B0 0 0 & 20 0
deg
Fig.4. Theforming of the nominal gain function and the
frequency bounds for the first channel.

The controller g, must be designed, so that the first

inequality from (2) be satisfied. The transfer
function for this loop can be determined as follows.

49s + 502
_ < 14
92757 305 148 (14

g | i i 1 i i i i i
300 270 40 210 180 150 120 B0 B0 A0 O
ey

Fig.5. The Forming of the nominal loop gain function and the

frequency Bounds for second channel

The frequency bounds and the nomina loop gain
for second loop are shownin Fig. 5

The results of simulations for the closed loop system
using designed controllers are shown in Fig.6. The
time response in both channels of the nonlinear
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system for the domain of parameter variations is
located between the desired bounds as shown in
Fig.6. The undesired mutual effects of the channels
on the outputs of each othersisn’t too much. On the
other hand, the QFT controller can handle this
amount of uncertainties. The control efforts
simulationsillustrate acceptable behaviorsin Fig.7.
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Fig.7.Control signals for closed loop system

3 Manipulator Control Using GQFT

Method

In this section, to present the practical application of
this method on real industrial systems, the robust
controllers are purposed for the position and angle
control of a planner robot on sketching, planning,
and other similar tasks, in such away it is faced with
high degree of uncertainty, disturbances and
nonlinearity.

3.1 Robot Modeling
Let's assume that the basic equation for motion of a
robot arm would be as follows:

M(a).6+N(q,q)=u (15)
gisa (k x1)position vector,

gisa (k x 1)velocity vector,

Gisa (k x1)acceleration vector,

M (q)isa (k X k) matrix of inertia (invertible),

N (q,q)is a (k X l)vector of damping centrifugal
coriolis gravitational force, (u) isa (k x 1)vector of

generalized forces and torques.

Furthermore, let's suppose that the open loop system
mentioned in (15) has k degree of freedom (d.o.f).
Normally, the amount of k is equal to 6, so the

number of d.o.f in the Cartesian space ing. The

control problem is to follow a given tragectory
g (t) and to produce a torque vector u such that the

tracking error approaches to the acceptable value
(zero) ast — oo ,[13].

3.2 The Motion Equation

In this part, we concentrate on both the equation of
motion of a two-link robot arm and the computation
of the robust controller. Consider the following two-
link robot arm which its masses concentrated at the
ends of the links and the motor inertias are neglected

(Fig. 8).

Fig. 8. The scheme of atwo-link robot mani pulator.

According to (15), we will have the equations of
motion as:
M (a).6=-N(q,q) +u
In this equation:

m, m
M (q) :|: 11 I2i|

m12 m22 ( 16)

:{ (m, +m,) .} m, I, 1,.Cos(q, —q,)
m2.|1.|2.COS(q1—q2) mzlz2
And



Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Robotics and Automation, Madrid, Spain, February 15-17, 2006 (pp207-213)

2

[n dz.m,1,.1,.Sin(g, —q,)...
N(q,q){ 1}{ 2 e
n —q;.m,.1.1,.8in(q, —q,)...
..~ (my+m;).gl,.Sing, + K, .4,
.—M,.gl,.8ing, + K, .4,

Where Ky, and Ky, are the damping coefficients for
the ,q, and q,cases, respectively.

3.3 Design of the Controller through GQFT
Considering the uncertainties bound asin Table. 1,

If the desired output characteristic is assumed to be
the same as in the previous example, control task
will be to design the robust controller for the
manipulator system, in which controller satisfies the
desired closed-loop time response] 16,17].
Substituting g = 9.8, we have:

u, = (m, +m)1g, + myll, cos(@, —a,)d, an
+m,hl,sin(g, —g,)d; — (m, +m,)gl sing, + K, 6,
u, =myl, cos@, —q,)d, +ml3d,
+myll, sin(@, —a,)d —m,gl, sing, + K,
Substituting the first term of Tailor extensions of

Sin(ql_qz)’Cos(ql_q2)15in(q2) and sin(q,), we
will have:

(18)

3 5
smq:q—qurqE—... (29
cosq =1—q—2+q—4
2 4
and also
u, = (m, +m)I2g, + m,l 1,4,
+(mpll, (0, —0,)dz —(m; +m,)ghg, + K, &,
u, =myl, L, +mI2d, —(m,l,1, (g, —a,)d7 20
—(m,gl,)a, +K, 4,
u, = (m, +m)I2g, +m,L1,q,
+ kg Ay +m,lil,0,)d, —m,ll,0,42

_(ml +m2)g|1q1

.. 2 .. .
u, =m,l1,6, +m,l;q, +kq2q2

s 2 . 2 .
_m2|l|2q1q1 +mzlllzqzqz _ng|2Q2
Assuming: ,
a, = (Mg +my)l; ) Bi=myll,

_ _ 2
a,=myl 1, Br=mylil;

If the Tailor extensions for the output,[q,,q,]" and
the inputs [u,,u,]", are supposed as the following
equations, considering the zero initial conditions
(00 = 0,0, = 0), wewill have:
{Ch = Gyt + Oyt * + Gyt® + ...
Oy = Ot + Gt + Qpgt® + .
U = Uy + Uyt +u,t* +...
{uz = Uy + Uyt + Ut + ...

Neglecting the higher order terms on the above
extensions and substituting (21), we will have:

(21)

Uy +Uy,t = (m, +m,)I (29, +6q,,t)
+m,l,1,(20,, +60,5t) +(29,, +6q,,t)
+ka, (ary; +2q,,t) + m, 1 1,0,,t(q,, +29,,t)°
—m,1,1,0,,t (0, +29,,t) % — (M, +m,)gl,q,t
Uy + U, t =m, 11, (20, +6q,,t)

+M, 13 (20, +605t) +Ka, (01 +20,1)
(22)
- mZIlI 2q11t(q11 + quzt) 2

+m, | 1,0,,t (0, +20,,t) % — (M, gl,)q,t
Uyo + Uy f =4 (204, + 60 £) + 3,(20,, + 60,4)
+ K0 (Chy + 200) + B0t 10 + 20,0)°
~ Bt (G +20,8)° — (M, +m, ) ghay ¢
Upg + Uyt = (20, + 60 ) + 5,(200,, +60,4)
+KC (G + 20,8) — 4,0 £ (G, +20,1)°

+ a0t (G + 20[12'[)2 —(m,gl,)g,t
Where:

Uy = 20,04, + 23,0

(23)
Uy = 20,0y, + 23,0,

Then:
ng[al ﬂ1:||:q12j|_>i3|:q12:|
s|la, B0z S” Uz

Andfinaly Py  (s) can be determined asfollows:
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2a,5° 2B,
PN’V(S)ZL(;SZ 2ﬁ152} (9
2 2

The next step is obtaining d, | (s) for al domains of

parameters, variations. The controllers g, and ¢,

should be designed in such a way that the desired
output characteristic would be satisfied. The transfer

functions of the controllers g, and g, are obtained

according to the nomina transfer gain function,
which their simulation results illustrated on Fig.9
and Fig .10 asfollows:

Loop1
50+

40 (!1:0.1
30!
20! 1

10!

—360 -330 -300 -270 -240 -210 -180-150 -120 -90 -60 -30 O

deg

Fig. 9. The frequency bounds and the transfer gain
function for the first channel.

50 Loop 2

40|

=0.1
301
20

10}

3 1 . I | . I . | i . L
-380 -330-300 -270 -240-210-180-150-120 -90 60 -30 O

deg
Fig. 10. The frequency bounds and the transfer gain
function for the second channel

(s +1.4383 *10°)
(s + 22.0981 - 24 .2315 j)
(s + 0.031 *10 %)
(s + 22.0081 + 24.2315 j)

_0.0041 s(s + 3.84 *10°)
2 (s+13.69)(s + 0.0013 )

g, = 6.61
(25)

4 Simulation Results of Applying
GQFT Method on Uncertain MIMO

Nonlinear System

In this section, The GQFT method will be applied on
the manipulator system under the parameters
uncertainties to demonstrate how well they can cope
with uncertainty and nonlinearity remaining on the
desired efficiency bounds. According to the Fig.11
and Fig.12, it is presented that GQFT approach
forces the system states to remain within the desired
efficiency bounds with acceptable tracking error and
a high robustness. These figures illustrate that
generalized quantitative feedback theory as an
effective robust method can control the MIMO
nonlinear system with high degree of uncertainties.
However, one of its important disadvantagesis large
amount of over design error as shown in Fig.12.

The verification of Table . 2, Table .3, show the
efficiency of this method on MIMO nonlinear
practical systems.

i 15

Time{sec)

Fig.11. GQFT response to step input for nominal
MIMO nonlinear system

Timeisec)

Fig.12. GQFT response to step input for MIMO
nonlinear system in presence of high degree of uncertainties
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Table.1. The Uncertainty Bounds for MIMO Nonlinear Robot

Kaq;
Lick Mg ogm?) L (M)
1 [09,11] [9 11]  [0.18,0.22]
2 [1.8,2.2] [9, 11] [0.18,0.22]

Table.2. The Efficiency Characteristic for Nominal System

Using GQFT Method
. . Peak of ) Percentage
Link L\)A\?Z:Qgg SititrI];zg Control Slllmi\t?:)n of Steady
Effort State Error
1 0% 22 27N.m 15 0%
2 0% 22 1I9N.m 15 0%

Table.3. The Efficiency Characteristic in Presence of
Uncertainties and Nonlinearities Using GQFT Method

) . Peak of . Percentage
nc BT S cowo RS of ey
Effort State Error
1 4% 3 48N.m 30 %
2 6% 3 40N.m 30 7%
Conclusion

An effective model based (GQFT) method, have

been introduced to generalize QFT for MIMO
nonlinear cases. The application of the GQFT
technique for the development of a force controller
on MIMO nonlinear systems are verified. A
parametrically uncertain second-order nonlinear
model was developed to represent the relation
between the control signal and the force acting on
the robot manipulator using GQFT.
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