
 
Fig. 1.  The fundamental QFT design. 

A Novel Approach for Extending Quantitative Feedback 
Theory on Nonlinear MIMO Systems 

 
R. ESMAEILZADEH1, M.AMJADI1, M. ATAEI2,  
GH. ALIZADEH3, S. B. ARAGHI, M. FATTAH4 

1Aazarbaijan Regional Electric Company, TABRIZ, IRAN 
2Isfahan Regional Electric Company, ISFAHAN, IRAN 

   3Faculty of Electrical Engineering, University of Tabriz, TABRIZ,IRAN 
4Tehran Regional Electric Company, TEHRAN, IRAN 

 
 
Abstract: An approach to robust control design for a nonlinear multi-input/multi-output (MIMO) plant using 
linearization theory and quantitative feedback theory (QFT) is presented and applied to the design of a MIMO 
nonlinear robot control system. This method is named Generalized Quantitative Feedback Theory (GQFT). 
GQFT techniques are introduced to give a feedback control design for the plant model under the parameter 
uncertainty. The QFT method for single-input/single-output (SISO) plants is used to obtain robust stability 
under the given plant-parameter uncertainties. The design results demonstrate the good performance and 
features of the proposed GQFT approach that may be achieved. 
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1   Introduction 
Many practical systems are characterized by 
uncertainty which makes it difficult to maintain 
good stability margins and performance properties 
for the closed-loop system. There are two general 
design methodologies for dealing with the effects of 
uncertainty: 
1. "Adaptive Control", in which the parameters of 
plant or some other appropriate structure are 
identified online and the information obtained is 
then used to 'tune' the controller. 
2. "Robust Control", which typically involves a 
'worst-case' design, approaches for a family of plants 
representing the uncertainty using a single fixed 
controller, [12,9,15]. 
 Quantitative feedback theory (QFT) is a robust-
control method developed during the last two 
decades which deals with the effects of uncertainty 
systematically. It has been successfully applied to 
the design of both SISO and MIMO systems; it has 
also been extended to the nonlinear and the time 
varying case [1,2,3, and 6]. In comparison to other 
optimization-based robust control approaches, QFT 
offers a number of advantages. These include: 
  a. The ability to assess quantitatively the 'cost of 
feedback' [5 and 7].   

b. The ability to take into account phase 
information in the design process (which is lost if, 
for example, singular values are used as the design 
parameters). 
c. The ability to provide ' design transparency', that 

is, clear tradeoff criteria between controllers 
complexity and feasibility of the design objectives. 
d. Note that (c) implies in practice that QFT often 
results in simple controllers which are easy to 
implement. 

For the purpose of QFT, the feedback system is 
normally described by two degrees-of-freedom 
structure shown in Fig. 1. In this case R is an input, 
F is prefilter transfer function, G is a cascade 
compensator, and P represents a set of transfer 
functions which describes area of plant-parameter 
uncertainty. QFT takes into account ‘quantitative’ 
information on the plant’s variability (uncertainty), 
requirements for robust performance, tracking-
performance specifications, expected disturbance 
amplitude and requirements for its attenuation. The 
output y(t) is required to track the command input 
signal r(t) and to reject the external disturbances 

)(1 td and )(2 td , [18,19,14]. 
The compensator is designed so that the variations 
of y(t) to the uncertainty in the plant P are within 
acceptable tolerances and the effects of the 
disturbances )(1 td  and )(2 td on y(t) are small. The 
prefilter properties of F(s) must be designed for the 
desired tracking of the reference r(t). 
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2 Introduction To GQFT Method for 
Nonlinear MIMO Systems 
In designing a robust controller for MIMO nonlinear 
systems, a combination of two approaches is used as 
follows: 
 I. Designing a robust controller for SISO nonlinear 
system, [8]. 
II. Designing a robust controller for linear time-
invariant system. 
Due to this aim, firstly, the MIMO nonlinear system 
must be transformed to a set of linear time-invariant 
systems furthering disturbances. Then, applying 
robust controller approach (QFT) for equivalent 
MIMO linear time-invariant ones, as a solution of 
the MIMO nonlinear control systems will be 
designed. The following example is prepared for 
more understanding, [10,11,13]. 
 
 Example 1: Consider a MIMO nonlinear system as 
shown in Fig.2, which is formulized by a dynamic 
equation as (1). 
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The purposed system is supposed to be a MIMO 
nonlinear case with two outputs, [ ]Tyy 21,  and two 

inputs, [ ]Tuu 21, . Furthermore, all of the initial 
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To design the robust controller by using QFT, the 
system outputs should satisfy the following 
inequality: 
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The desired performance and time response 
characteristics, which are simulated on Fig.3, shows 
that the output deviation of first channel from 

)(1 wy o shouldn't be more than quantitative amount 
of )(1 we  and for the second channel deviation of the 
output from )(2 wyo  shouldn’t exceed )(2 we . 
The design procedure is as follows:  
1.  Transforming the nonlinear system into a linear 
system considering disturbances on the system 
output which satisfies below equation: 

yNyNyN dyPNuy ,,, +′+==      (4) 
To meet this purpose, the Tailor extension for the 
input )(tu and the output )(ty should be calculated 
as follows: (with regard to 0, 2010 =yy ): 
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Substituting the above equations into the system 
equations, we have:   
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It can be found that: 

 
Fig. .2. The block diagram of a MIMO nonlinear system 

 
Fig. 3. The frequency and time characteristic of the closed loop 

system of e1 and e2. 
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Finally, the linear system can be determined as 
follows    : 
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Disturbance yNd ,  for the system output sets of a 
second order plant can be determined as follows: 
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The steps of determining yNd ,  are as follows: 

a. Choosing the parameters A , B , C , D , E , 

2k and 1k , and transforming 2y and 1y into time -
domain functions. 
b. Defining 2u and 1u  according to (1), and 
determining transfer function. 
c. Determining yNd ,  according to (4), which 

satisfies initial equation 0, =′ yNy , 
and uPyd yNyN ,, −= . 
d. Repeating the steps a, b and c for all values on 
A , B ,C , D , E , 2k and 1k , and choosing upper 
bounds on 2y and 1y to create sets of 
couples{ }yNyN dP ,, , , Which satisfy desired outputs 
equations. 
2. Then the system inputs can be calculated from 
relation 00 uGyr += where Tyyy ],[ 210

oo=  arises 

from (3), and  0u can be calculated choosing 0A , 

0B , 0C , 0D , 0E , 2k and 1k ,  which are the average 

amounts of A , B , C , D , E , 2k and 1k , 
respectively. 
3. According to the approach which is verified on 
designing controller for MIMO systems, the 
controller 1g should be designed in such a way that 
the first inequality from (2) would be satisfied. The 
bounds and the nominal loop gain function are 
shown in Fig.4. The controller transfer function is 

determined as follows: 
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The controller 2g must be designed, so that the first 
inequality from (2) be satisfied. The transfer 
function for this loop can be determined as follows.  
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The frequency bounds and the nominal loop gain  
for second loop are shown in Fig. 5 
The results of simulations for the closed loop system 
using designed controllers are shown in Fig.6. The 
time response in both channels of the nonlinear 

 
Fig.4.  The forming of the nominal gain function and the  

frequency bounds for the first channel. 

 
Fig.5. The Forming of the nominal loop gain function and the 

frequency Bounds for second channel 
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system for the domain of parameter variations is 
located between the desired bounds as shown in 
Fig.6. The undesired mutual effects of the channels 
on the outputs of each others isn’t too much. On the 
other hand, the QFT controller can handle this 
amount of uncertainties. The control efforts 
simulations illustrate acceptable behaviors in Fig.7.    

 
3 Manipulator Control Using GQFT 
Method  
In this section, to present the practical application of 
this method on real industrial systems, the robust 
controllers are purposed for the position and angle 
control of a planner robot on sketching, planning, 
and other similar tasks, in such a way it is faced with 
high degree of uncertainty, disturbances and 
nonlinearity.  
 

3.1 Robot Modeling 
Let's assume that the basic equation for motion of a 
robot arm would be as follows: 

uqqNqqM =+ ),().( &&&     (15) 
q is a ( )1 × k position vector, 
q& is a ( )1 × k velocity vector, 
q&& is a ( )1 × k acceleration vector,  

( )qM is a ( )kk ×  matrix of inertia (invertible),  
( )qqN &, is a ( )1 × k vector of damping centrifugal 

coriolis gravitational force, ( )u  is a  ( )1 × k vector of 
generalized forces and torques. 
Furthermore, let's suppose that the open loop system 
mentioned in (15) has k degree of freedom (d.o.f). 
Normally, the amount of k is equal to 6, so the 
number of d.o.f in the Cartesian space is k

qR . The 
control problem is to follow a given trajectory 

)(tqd and to produce a torque vector u such that the 
tracking error approaches to the acceptable value 
(zero) as ∞→t ,[13]. 
 
3.2 The Motion Equation 
In this part, we concentrate on both the equation of 
motion of a two-link robot arm and the computation 
of the robust controller. Consider the following two-
link robot arm which its masses concentrated at the 
ends of the links and the motor inertias are neglected 
(Fig. 8). 

According to (15), we will have the equations of 
motion as: 

uqqNqqM +−= ),().( &&&  
In this equation: 
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And 

Fig.7.Control signals for closed loop system 

 
Fig. 6.  The time response for the closed loop system. 

 
Fig. 8.  The scheme of a two-link robot manipulator. 
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Where Kq2 and Kq1 are the damping coefficients for 
the ,q2 and q1cases, respectively. 
 
3.3 Design of the Controller through GQFT 
Considering the uncertainties bound as in Table. 1, 
If the desired output characteristic is assumed to be 
the same as in the previous example, control task 
will be to design the robust controller for the 
manipulator system, in which controller satisfies the 
desired closed-loop time response[16,17].  
Substituting 8.9=g , we have: 
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Substituting the first term of Tailor extensions of 
)sin( 21 qq − , )cos( 21 qq − , )sin( 2q and )sin( 1q , we 

will have: 
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Assuming: 

If the Tailor extensions for the output, Tqq ],[ 21 and  
the inputs Tuu ],[ 21 , are supposed as the following 
equations, considering  the  zero  initial  conditions 

)0,0( 2010 == qq , we will have: 
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Neglecting the higher order terms on the above 
extensions and substituting (21), we will have: 
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And finally )(, sP yN  can be determined as follows: 
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The next step is obtaining )(, sd yN for all domains of 

parameters, variations. The controllers 2g  and 1g  
should be designed in such a way that the desired 
output characteristic would be satisfied. The transfer 
functions of the controllers 1g  and 2g are obtained 
according to the nominal transfer gain function, 
which their simulation results illustrated on Fig.9 
and Fig .10 as follows:  
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4 Simulation Results of Applying 
GQFT Method on Uncertain MIMO 
Nonlinear System 
In this section, The GQFT method will be applied on 
the manipulator system under the parameters' 
uncertainties to demonstrate how well they can cope 
with uncertainty and nonlinearity remaining on the 
desired efficiency bounds. According to the Fig.11 
and Fig.12, it is presented that GQFT approach 
forces the system states to remain within the desired 
efficiency bounds with acceptable tracking error and 
a high robustness. These figures illustrate that 
generalized quantitative feedback theory as an 
effective robust method can control the MIMO 
nonlinear system with high degree of uncertainties. 
However, one of its important disadvantages is large 
amount of over design error as shown in Fig.12. 
The verification of Table . 2 , Table .3, show the 
efficiency of this method on MIMO nonlinear 
practical systems.  

 

            Fig.11. GQFT response to step input for nominal 
MIMO nonlinear system 

         Fig.12. GQFT response to step input for MIMO 
nonlinear system in presence of high degree of uncertainties 

 

 
Fig. 9.  The frequency bounds and the transfer gain  

function for the first channel. 

 
Fig. 10.  The frequency bounds and the transfer gain 

 function for the second channel 

Loop 2 

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Robotics and Automation, Madrid, Spain, February 15-17, 2006 (pp207-213)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
An effective model based (GQFT) method, have 
been introduced to generalize QFT for MIMO 
nonlinear cases. The application of the GQFT 
technique for the development of a force controller 
on MIMO nonlinear systems are verified. A 
parametrically uncertain second-order nonlinear 
model was developed to represent the relation 
between the control signal and the force acting on 
the  robot manipulator using GQFT.  
 
References: 
[1] A. C. Zolotas, , and G. D. Halikias,: 
‘Optimal Design of PID Controllers Using the QFT 
method’,IEE, Proceeding on Control application, 
1999, pp. 585–589. 
[2] D.E. Bossert,: ‘Design of robust quantitative 
feedback theory controllers for pitch attitude hold 
systems’, J. Guid. Control Dyn., 1994, 17, (1), pp. 
217–219. 
[3] S. F.  Wu,., M.J. Grimble, , and S.G. 
Breslin,: ‘Introduction to quantitative feedback 
theory for lateral robust flight control systems  
design’, Control Eng. Pract., 1998, 6, (7), pp. 805–
827. 
[4] B. Azvine, , and R.J. Wynne,: ‘Improved 
MIMO quantitative feedback design in Matlab’. 
Proc. 13th World Congress of IFAC, San Francisco, 
USA, 30 June–5 July 1996, pp. 321–326. 
[5] R. A. Hess, , and D.K. Henderson,: ‘QFT 
multi-input, multi-output design with non-diagonal, 

non-square compensation matrices’. Proc.  13th 
World Congress of IFAC, San Francisco, USA, 30 
June–5 July 1996, pp. 309–314. 
[6]  S. F. Wu, , M.J. Grimble, , and W. Wei,.: 
‘QFT based robust/fault tolerant flight control 
design for a remote pilotless vehicle’, IEEE Trans. 
Control Syst. Tech., 2000, 8, (6), pp. 1010–1016. 
[7] C. H. Houpis, , and S.J. Rasmussen,: 
‘Quantitative feedback theory: fundamentals and 
applications’ (Marcel Dekker, Inc., New York, 
1999). 
[8] I. M. Horowitz, "Quantitative Feedback 
Design Theory (QFT)", Boulder, CO: QFT 
Publications, 1992. 
[9] J. J. D’Azzo and C.H. Houpis, "Linear 
Control System Analysis and Design", New York: 
McGraw-Hill, 1988. 
[10] O. Yaniv, "Quantitative Feedback Design of 
Linear and Nonlinear Control Systems", Norwell, 
MA: Kluwer, 1999. 
[11] H. Khalil. "Nonlinear systems Analysis",2nd 
edition,Prentice Hall,1996. 
[12] M.  Ataee. "Using QFT theory in  robust       
  controlling  on nonlinear systems", University of 
Tabriz ,Faculty of         Electrical engineering, 
IRAN. 
[13] J. Jacques, E. Slotine, W. Li ," Applied 
nonlinear control", Prentice-Hall International 
Edition, 1991. 
[14] I. Horowitz, "Quantitave Feedback 
Theory",IEEE Proc., Vol. 129,Pt. D,No. 
6,November 1982. 
[15] I. Horowitz,  "Application of quantitative 
Feedback Theory"(QFT) to highly uncertain 
nonlinear time-                   varying             plants", 
European Control Conference Grenoble , France, 
July 25,1991. 
[16] O. Yaniv, "Quantitave Feedback Design of 
Linear & nonlinear control system" , Kluwer 
Academic Publishers, 1999. 
[17]    Gh.  Alizadeh, M. A. Ataee, R. Esmaeilzadeh, 
" Robust Feedback Linearization", CEE 05, 
Portugal, 2005. 
[18]   N. Niksefat and N. Sepehri, "Designing 
Robust Force Control of Hydraulic Actuators 
Despite System and Environmental Uncertainties" 
IEEE Control System Magazine, 66-76, April 2001. 
[19]  M. Ataei, R. Esmaeilzadeh, Gh. Alizadeh, 
"Quantitative Feedback theory for Nonlinear 
Systems," WSEAS Transaction on Circuits and 
System, 2005 . 

 

Table.1. The Uncertainty Bounds for MIMO Nonlinear Robot 
 

Link im (kg) )( 2kgm

Kqi

 
)(mLi  

1 [0.9, 1.1] [9, 11] [0.18, 0.22] 
2 [1.8, 2.2] [9, 11] [0.18, 0.22] 

  
Table.2. The Efficiency Characteristic for Nominal System 

 Using GQFT Method 
 

Link Maximum 
Overshoot 

Settling 
Time 

Peak of 
Control 
Effort 

Time of 
Simulation 

Percentage 
of Steady 

State Error 
1 0% 2.2 27 N.m 15 0% 
2 0% 2.2 19 N.m 15 0% 

Table.3. The Efficiency Characteristic in Presence of  
Uncertainties and Nonlinearities Using GQFT Method 

Link Maximum 
Overshoot 

Settling 
Time 

Peak of 
Control 
Effort 

Time of 
Simulation 

Percentage 
of Steady 

State Error 
1 4% 3 48 N.m 30 7% 
2 6% 3 40 N.m 30 7% 
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