
 Consistent Two- phase commit in distributed database
Mushtaq Ali, Iftikhar Ahmad, Shahbaz Pervez, Dr. Nadeem Daud Potta

Computer Science Department,
CIIT, Abbottabad

Pakistan

Abstract: - Two-phase commit work well for centralized database, but in distributed
database it creates problems. In some situations the two-phase commit protocol keep
the database in inconsistence state and in some situation it takes too much time by
using message exchanges. In this paper we present an idea for two-phase commit
protocol that will always keep the distributed database in consistence state and also
will take relatively small amount of time.

Key-Words: - 2PC: Two phase Commit, ACID: Atomicity,Consistency,Isolation,
Durability,TM: Trasnaction manager, DM :Data Manager, Prewrite, dm_write,
centralized database, distributed database, cohorts, commit.

1 Introduction

A transaction has four properties that is acronym as
ACID (atomicity, consistency, isolation, durability).
Two of the four properties that are atomicity and
durability of transactions must be maintained by the
reliability protocols. [1] Atomicity requires that
either all or none of the operations in the transaction
is executed. Atomicity is maintained even in the face
of failure. Durability requires that the effects of a
successfully completed transaction are permanently
recorded in the database and must not be lost
because of subsequent failures. The enforcement of
atomicity and durability.
require the implementation of atomic commitment
protocol and distributed recovery protocols. The
most popular atomic commitment protocol is two-
phase commit protocol. [2] The two-phase commit
protocol is used at the end of transaction execution
for committing the values of effected attributes in
the database. In the first phase of two-phase commit
the changes are first stored in the secure area of hard
disk and then in the second phase it is stored to the
database from the secure portion of hard disk. This
technique work well in centralized database because
there is only one TM and one DM .The TM instruct
the DM in the first phase to store the changes that
reside in the main memory into the secure portion of
the hard disk through prewrite.The database will
remain in inconsistent state because the data from
the secure portion of hard disk is now storing into
the database. But in centralized database this
incompletion of writes of a transaction does not
create problem although the database goes into the

inconsistent state but it cannot be accessed by other
TMs because there is only one TM. When that TM
become correct then its first preference will be to
complete the remaining writes.
We consider the execution of the following
transaction both in centralized and distributed
database system

Transaction T1
Begin
Read (Balance)
Read (Interest)
Balance= Balance+1000
Interest= Balance*5/100
Write (Balance)
Write (Interest)
End
Suppose we have a hard disk that contains a file
having name account is shown below

Hard disk Account

Fig.1 Data before transaction
execution

During the execution of the above transaction the
values of balance and interest will be store in the
Ram of computer as

Acc_no Balance Interest

1 5000 250

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp322-326)

 RAM

Fig .2 values in the RAM during transaction
execution

Now when the last statement of the above
transaction is executed that is End statement
then the values of balance and interest will
become is

RAM

Fig 3. Values in the RAM after transaction
execution

As the transaction execution is completed
therefore the first phase of two- phase
commit will be started .The TM will sent
prewrite (Balance) and prewrite (Interest) to
the DM one at a time. The DM will take the
values of balance and interest from the main
memory and store them in the secure
portion of hard disk. So their representation
on the hard disk will be as

 Balance

 Interest

Fig 4. Values in the hard disk after prewrite

Fig 5. Values in the file after 2PC

In the second phase if one dm_write (Balance) is
received by the DM and then the TM fails then the

database will remain in inconsistent state. Even
though the database is in the inconsistent state it will
not create any serious problem because there is only
one TM and one DM, no other TM send read or
write request to the DM when the TM is repaired
then first it will send dm_write (Interest) to the DM
and the DM will store the previously prewrite data
item in the database.

But this create serious problem in distributed
database [3] because there are large number of TMs
and DMs if one TM fails the other TMs can instruct
the DM to extract the uncommitted values from the
database because other TMs works well. The
structure of the distributed database is shown below.

Fig 6. Structure of distributed database
system

Now if one TM send prewrite (Balance) and
prewrite (Interest) to all the three DMs then the DMs
will store the changed values of balance and interest
into the secure portion of their hard disks and so the
data in their hard disks will look like as

Fig.7 Values on the hard disks after
prewrites in the distributed database

Now the TM will send dm_write (Balance)
one by one to all the DMs then it will send
dm_write (Interest) to all the DMs one by
one.
Suppose if the TM send dm_write

Acc_no Balance Interest

1 6000 300

 Balance Interest

5000 250

 Balance Interest

6000 300

6000

300

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp322-326)

(Balance) to all the three DMs and then
fails. In this situation the database will be in
an inconsistent state at three systems.
Because the interest value is not changed at
the three systems and any TM other than
the failed TM can send a dm_read or
dm_write instruction to the value of interest
and thus invalid value will be accessed
which is the main problem. This problem is
shown as

Fig.8 Values in the files when the TM fails

before dm_write (interest)

The value of interest should be 300 rather
than 250 which is invalid
2. Old approaches for Two-phase
commit in distributed database system:

2.1 The inconsistency in the distributed
database system is handled by the 2PC
protocol. The TM sends, as many prewrite
instructions as there are effected data items
in the RAM one for each data item to all
the DMs which are responsible for storing
these data items. [3] Each prewrite specify
two parameters to the DM one for the
address of the data item and one specify
the other DMs where the copies of the
same data item are stored or where the
other data items that involved in the
operations of transaction are stored.
In the second phase the TM must send
dm_write one for each data item, for
which the prewrite has already been sent.
If the TM fail before sending all of the
dm_write then the DMs who did not
receive dm_write for a data item will
examine all the DMs who are responsible
for storing the desired data item if any of
them has received the dm_write for the
desired data item then the DM who did not
receive the dm_write will automatically
store the previously prewrite data items in

the database otherwise it will not store the
previously prewrite data items in the
database.
This approach works well if there is one
data item replicated or not on which the
transaction perform operation.
But this approach create problem when the
transaction perform operation on more
than on data items and these data items are
replicated or not.
We apply this approach by using the
transaction T1.and Fig 5 above.
Suppose the TM send
prewrite(Balance,DM1,DM2,DM3)
prewrite(Balance,DM2,DM1,DM3)
prewrite(Balance,DM3,DM1,DM2) and
prewite (Interest,DM1,DM2,DM3)

to the three DMs one at a time.
They store their values on the secure
portion of the hard disk. As shown below.

 Fig.9 Values on the hard disks after
prewrites in the distributed database

Now suppose the TM send
dm_write (Balance, DM1, DM2, DM3)
dm_write(Balance,DM2,DM1,DM3)
dm_write(Balance,DM3,DM1,DM2) to the
three DMs and then fail.
In this situation the three DMs will store
the value of Balance in the database as
shown below

Fig.10 Values in the files when the TM fails
before dm_write (interest)

Acc_no Balance Interest
1 6000 250

Acc_no Balance Interest
1 6000 250

Acc_no Balance Interest
1 6000 250

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp322-326)

and then each DM will examine the other
two DMs to find out that which DM has
received the dm_write (Interest). Neither of
them has received the dm_write (Interest)
and hence the database will go into the
inconsistent state. The TM other than the
one, which is failed, can access the invalid
database.
2.2 The Protocol Messages to commit a
distributed transaction PrN requires two
messages from TM to cohort and two
messages from cohort to TM four messages
in all The protocol involves the following
steps [2];

a) A TM notices all cohorts that the
transaction is to be terminated via the
PREPARE message.

b) Each cohort then sends a vote message
either a COMMIT-VOTE or an ABORT-
VOTE on the outcome of the transaction. A
cohort responding with a COMMIT-VOTE
is now prepared.

c) The TM commits the transaction if all
cohorts send COMMIT-VOTEs If any cohort
sends an ABORTVOTE or the TM times out
waiting for a vote the TM aborts the
transaction. The TM sends the outcome
message i.e. COMMIT or ABORT to all
cohorts.

d) The cohort terminates the transaction
according to its outcome either committed or
aborted the cohort then ACKs the outcome
message.

This approach causes a problem.
The TM reserve specific amount of time for the
commit-vote or abort-vote message arrived from
each cohort. If a cohort send commit-vote but it
reach to the TM late means the time period of
that cohort is out then the TM will make
presumption that whether to send commit or
abort to their cohorts if it send commit to all of
the cohorts involved in the commitment then it
is ok. The commitment will be carried out
successfully.
But if the TM sends abort to all of their cohorts
then the commitment will not be performed by
the cohorts although all of the cohorts are ready
to commit.
Similarly when the abort-vote from one the
cohort reaches late to the TM then the TM will
have to make presumption.
The presumption may or may not be correct. If

the presumption is made correct then its ok
otherwise it can create problem.

3. Consistent two-phase commit Protocol in
distributed Database.

When a transaction change the values of
data items in a database then the TM should
send one prewrite and one dm_write for
each of the DM on which those data items
are replicated.

1). In the first phase of the two phase
commit protocol the TM should send one
prewrite instruction to each of the DM for
the entire transaction on which the values
of the data items are replicated that are
changed by the transaction.
The prewite should contain two
parameters. The first parameter should
specify the addresses of all the data items
that are reside in the main memory and
whose values are to be stored in the
database and the second parameter should
specify the numbers of DMs who are
responsible for storing the values of the
data items effected by the operations of a
single transaction in the database.

2). In the second phase the TM should
send one dm_write containing the
addresses of all of the data item whose
values are stored in the secure portion of
the hard disks during fist phase to each of
the DMs which are involved in the
commitment of the intended transaction.

Now we apply this latest two phase
commit protocol for the commitment of
the above transaction.
The TM will send prewrite ((Balance,
Interest), DM1, DM2, DM3), prewrite
((Balance, Interest), DM2, DM1, DM3),
prewite ((Balance, Interest), DM3, DM1,
DM2) to the three DMs above one by
one. The first DM number specify the
DM to which the prewrite is to transmited
and the second and third DM numbers are
send to the DM1 in order to aware it that
these two DMs (DM2, DM3) are also
involved in the storage of the same data
items.
All of the three DMs will take values of
the specified data items from the main
memory and will store them in the secure

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp322-326)

portion of the hard disk. Here our first
phase of two-phase commit is finished.
Now in the second phase the TM will
send

dm_write((Balance,Interest),DM1)
dm_write((Balance,Interest),DM2)

dm_write((Balance,Interest),DM3)
One by one to the above three DMs.
Now suppose that one
dm_write((Balance,Interest),DM1) is
received by the DM1 and then the TM
fail.

 Now what will be do in this situation. As
the other DMs have not received the
dm_write instruction and they know that
what other DMs are involved in the storage
of the same data items, so they will examine
DM1 that whether it has received the
dm_write. As the DM1 already received
that dm_write, so the DM2 and DM3 will
automatically store their previously stored
values in the database.
So it has been proved that by using this
protocol the database will never become
inconsistent no doubt what ever the
transaction will be.
4. Conclusions
 The two phase commit protocol for
centralized database is explained in the [3].
While the explanation of the two phase
commit for distributed database having
name “A New Presumed Commit
Optimization for two phase commit” is
available in[2].the two phase commit
protocol that is designed for the centralized
database does not work correctly for the
distributed database system.
In this paper we present a two phase
commit protocol that will work accurately
and efficiently for the distributed database
system.

References

[1]. M. Tamer Ozsu and Patrick
Valduriez, “Distributed and Parallel
Database Systems”,Department of
Computing Science , University of Alberta
Edmonton,Canada T6G 2H1 NRIA,
Rocquencourt 78153 LE Chesnay Cedex
France.
[2]. Butler Lampson and David Lomet
“A New Presumed Commit Optimization
for Two Phase Commit”, Digital

Equipment Corporation Cambridge
Research Lab February 10,1993.
[3]. PHILIP A. BERNSTEIN AND
NATHAN GOODMAN, “Concurrency
Control in Distributed Database Systems”
Computer Corporation of America,
Cambridge, Massachusetts 02139.
[4]. John McDermotta and Sushil Jajodiab,
”ORANGE LOCKING: CHANNEL-
FREE DATABASE CONCURRENCY
CONTROL VIA LOCKING”, Naval
Research Laboratory, Washington, DC
20375, USA,Department of Information
Systems and Systems Engineering, George
Mason University, Fairfax, VA 22030,
USA.
[5].David Lomet, “Consistent
Timestamping for“Transactions in
Distributed Systems” Digital Equipment
Corporation Cambridge Research Lab,
September 7,1990.
[6]. Michael j.carrey and miron livny
“distributed concurrency performance”
A study of algorithms,distribution,and
Replication” Computer science Department
University of Wisconsin Madison,wi
53706.
[7]. Bharat Bhargava, “Concurrency control
in database system” Fellow, IEEE
[8]. Stefin blott and henry F.Korth,“an
almost serial -protocol for transaction
execution in main memory database
system” Bill laboratories.
[9]. Gjermund Hanssen “Concurrency
control in distributed Geographical database
systems” Department of Mapping Sciences,
Agricultural University of Norway,
PO Box 5034, N-1432 °As, Norway??
gjermund.hanssen@itek.norut.no
[10]. M. Tamer Özsu “DISTRIBUTED
DATABASE SYSTEMS” University of
Waterloo Department of Computer Science
Waterloo, Ontario Canada N2L
 3G1 {tozsu@db.uwaterloo.ca}

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp322-326)

