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Abstract: - The work presented in this paper concerns visual-based relative navigation of autonomous vehicles 
for satellite service. An evolutionary-based algorithm for the problem of pose estimation of 3D objects using 2D 
images is presented. The procedure consists on looking for six position parameters, three for rotation and three 
for translation, such that the projection of a model best fits a set of points (vertices) extracted from a 2D image. 
Distinguishing feature of the proposed algorithm is that the best matching model is also looked for. This feature 
is used for visual inspection in order to detect macro defects. A population of candidate solutions is used, whose 
goodness is measured in terms of distance between model and image points. Key features of the algorithm are 
also speed and robustness with respect to noise on the input data. Experimental results conducted both on 
synthetic and real images demonstrate the effectiveness of the proposed approach. 
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1   Introduction 
This work presents the results of on-going research 
regarding visual-based relative navigation of 
autonomous vehicles (chasers) for satellite service. 
The task includes recognition and visual inspection of 
the target spacecraft, including -if possible- a first 
diagnosis of macro defects (e.g. a missing or 
undisclosed component), and a relative localization 
(pose) in order to plan an approaching maneuver for 
closer inspection. Our work is aimed at covering both 
aspects of the task. 

Given a bi-dimensional (2D) camera image 
of an object, the pose estimation problem consists on 
finding the object’s position and orientation in space 
(3D). Model-based methods make use of a model of 
the object of interest, and attempt to match some of 
its key features such as edges, marks, vertices, etc. to 
the contents of the image. A common approach is to 
divide the search in two steps: first, features are 
extracted from the image and second, a matching is 
looked for. Key factor of a pose estimation algorithm 
are robustness with respect to noise in the input data 

and -according to the application- speed. Input data 
are often noisy: extracted features can be missing or 
false, and their position may be inaccurate due to 
poor image quality, bad light conditions, partial 
occlusions and/or precision of the acquisition and 
feature-extraction process. In addition, it is worth 
noting that the pose problem actually consists of two 
sub problems: finding the position and orientation of 
the object and finding the correspondence between 
features. The pose (position and orientation) problem 
implies finding the rotation and translation of the 
object with respect to the camera coordinate system, 
while the correspondence problem consists of 
establishing matching image features and model 
features (points). The problem is difficult because it 
requires solution of two coupled problems, 
correspondence and pose, each easy to solve only if 
the other has been solved first. Given the matching 
between model and image features, one can 
determine the pose that best aligns those matches. If 
the object pose is known, one can easily determine 
such matches projecting the model with known pose 
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into the original image. Most of the work presented in 
literature had addressed one of the discussed sub-
problems and recently there is clear tendency to 
address them simultaneously as they appear naturally 
in real problems. The problem of pose estimation is 
central in computer vision, and has been approached 
with a variety of methods, like Neural Networks [15], 
linear programming [11]. For a comprehensive 
survey of different techniques of 3D object modeling, 
correspondence and pose estimation [5], [10] and [7] 
are recommended. One of the most complete 
algorithms that deal with the correspondence and 
pose estimation simultaneously is SoftPOSIT [3].  

Evolutionary (or Genetic) Algorithms (EAs) 
[8] are a class of stochastic parallel search algorithms 
based on the principles of Darwin’s Evolution 
Theory. Evolutionary algorithms keep a set of 
individuals, called population where each individual 
encodes a candidate solution of the problem at hand, 
and is called chromosome. Each chromosome has 
associated a measure of its goodness with respect to 
the problem, which is called its fitness. At each step, 
called generation, a new population is generated 
applying the genetic operators: selection, crossover 
and mutation. Generation after generation, good 
solutions emerge (evolve) towards optimality. EAs 
have shown their power as search procedures in 
several applications, especially in presence of noisy 
input data, and when problem-specific knowledge can 
be formulated as a cost function. This is the case of 
the problem under study, since we are in presence of 
noisy input data (missing points, false points, and 
imprecision in the coordinates). We will see in the 
following section a formulation of the problem in 
form of cost function. Thus, EAs appear to be well 
suited to approach the problem. 

Genetic and Evolutionary Algorithms are not 
new to pose estimation. In [14] a genetic algorithm is 
used in a one-step procedure to optimise a filter-
based function aimed at detecting edges in the 
original and model image, and measuring their match. 
Other applications of Evolutionary and Genetic 
Algorithms in Computer Vision have dealt with the 
problem of camera calibration [9]. EAs have also 
been applied in image registration [2], where the 
objective is finding the best transformation between 
an input and a reference image. Image registration 
has wide applications in medical imaging. Pioneer 
work in this field is due to Fitzpatrick [6]. 

In this work an evolutionary-based procedure 
for the problem of model-based pose estimation is 
proposed. The procedure consists on looking for six 
position parameters (three for rotation angle, α,β,γ, 
and three for translation, Tx, Tx, Tz, see Fig. 1) such 
that the projection of some points of a model best fits 

a set of points extracted from the 2D image. The 
vertices of the model of the object are used as 
reference. The search is then reduced to a 2D point-
matching search. A distinguishing feature of the 
proposed algorithm is that it doesn’t look for one 
object (i.e. model), but it looks between the models of 
different objects to match the correct one. As we will 
see in the following sections, this feature is used to 
visually detect macro defects in the spacecraft. This 
paper is focused on a matching procedure to search 
and compute the pose of an object, assuming a 
previous feature-extraction method has been applied 
to return a set of points of interest (i.e. the vertices of 
the object). For the purpose of assessment, we 
adopted a well known feature detection algorithm, 
SUSAN [13], and both synthetic and real images 
have been used. Previously published results [12] 
have demonstrated the speed and robustness of the 
pose-finding process, and its ability to effectively re-
use information of a match in sequences of images, in 
order to track moving objects. This work is oriented 
towards multiple objects matching, with the final aim 
of implementing the algorithm on a real-time object 
tracking and inspection system [1] (Fig. 6). 

The rest of the paper is organized as follows: 
next Section introduces the geometry of the problem 
and some notation, while Section 2 describes the 
proposed matching algorithm, called EvoPose2. 
Section 3 reports on the results of experiments 
conducted on test images. Section 4 concludes the 
paper with a brief discussion on open questions, 
which lead to future work. 

 
 
1.2   Modeling of the Problem 
The scene is composed by a 3D world in which an 
object is seen by a camera. Figure 1 shows the 
coordinate system of the space where the object is 
placed.  Tx, Ty and Tz are the translation values with 
respect to the camera (positioned in the origin of the 

 

Tx 

Ty 

Tz 

0 

! 

" 

# 

y 

z 

x 
 

 
Fig. 1 Geometry of the problem 
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axes), and α,β,γ are the rotation angles about each 
axis. These six parameters are encoded in an array of 
floating point numbers. The precision for rotation 
angles has been set to 1 degree, and the precision for 
translation values is the maximum allowed by a 32 bit 
encoding of floating point numbers. A seventh 
parameter, the model number, is also encoded in the 
parameters array, which has thus 7 elements. 
 

2 Evolutionary Pose Estimation 
From the 2D view of the target object, a set of the 
representative points is extracted, in order to identify 
the object. Consider the case where the model is 
known. The pose estimation problem is formulated in 
the following way. We have to find the value of the 
three parameters (Tx,Ty,Tz), that give the position 
with reference to the camera position and distance 
from the camera, plus three parameters (α,β,γ) that 
represent the orientation of the object (see Fig. 1). If 
such parameters are given, then rotating and 
translating the model object by the corresponding 
values, and projecting it to the camera plane, would 
result in a perfect matching between camera image 
and model projection. In this case, the sum d of the 
distances between each couple of corresponding 
points would be zero. If the parameter corresponding, 
e.g., to the translation Tx is bigger, Tx’=Tx+Δ, then 
each point of the projected model would be shifted by 
a quantity f(Δ) with respect to the corresponding 
point in the camera image. The sum of the distances 
in this case would be d = n·f(Δ). Clearly, the closer 
the projection (Tx,Ty,Tz,α,β,γ) to the camera image, 
the smaller is d. Our matching problem then is turned 
into an optimization problem: 

 
min( d = Σi|pi-mi(s)| ), 

 
pi,mi  in  R2 

 
s = (Tx,Ty,Tz,α,β,γ) . 

 
(1) 

 

where pi is a point in the image, mi(s) is the model 
point projected according to s=(Tx,Ty,Tz,α,β,γ) and     
| - | is the distance between two-dimensional points. 
Since the correspondence between points is not 
known in advantage, a projected model point is 
considered to match an image point if it is the closest. 
Thus, the distance measure becomes: 
 

d = Σi|pi – minj( |pi – mj(s)| ) |  . (2) 
 

Figure 2 shows an example. Two different sets of 
parameters sM and sN lead to two different sets of 
projected model points, set M={m1,m2,m3,m4} and set 
N={n1,n2,n3,n4}. The distance between the points of 
set M and the image points P={p1,p2,p3,p4} is clearly 
smaller than the total distance of points N from points 
P. Therefore, the set M is a better match and the 
corresponding set of position parameters sM is a better 
solution. The point correspondence is shown with 
dashed lines. In the example just described, the two 
set of points sM and sN came from the same model, 
projected according to different position parameters. 
Clearly, the same applies in the case the projected 
model points do not come from the same model. 
Hence we can have a set of position parameters 
applied to different models. The parameters array s is 
then extended with a seventh element, x, the index of 
the model to be projected, s=(Tx,Ty,Tz,α,β,γ,x), and 
the projected points will be the result of the 
application of the rotation/translation/projection 
process to the corresponding model’s vertices. 

In the proposed algorithm, the array s is a 
candidate solution, and a good solution is sought with 
an evolutionary algorithm, which keeps a population 
of candidate solutions and evolves them toward 
optimality by means of the genetic operators. 

It is easy to see that if some of the points are 
noisy, the minimum total distance d will not be zero. 
This fact does not affect the search since the 
minimum distance in most cases still relates to a good 
point matching. This is shown in Figure 2, where 
point p2 is moved to p2’. Although the total distance 
is changed, set M still matches better than set N. The 
same applies when some of the points in the image 
are missing or are added (false points) due to poor 
image quality, partial occlusions and/or to faults in 
the segmentation process. This makes the EvoPose2 
matching algorithm very robust to noisy situations. 
Nevertheless, the objective function presents local 
minima, which means that there are combinations of 
parameters that lead to a small total distance, while 
the projected model image poorly matches the image 
points. This situation is especially evident in presence 
of highly noisy images. For this reason it is important 

 
Fig. 2  Distance and matching points 
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to rely on global search methods such as EAs, where 
search is done sampling the solutions space. 

The case of moving objects is not considered 
in this paper. However, it must be pointed out that for 
moving objects equation (2) will be dependent of 
time (image points pi will change its position in each 
incoming image frame, becoming pi(t). Thus, the 
population of candidate solutions will be evaluated 
each time using a slightly different function, i.e. we 
will be using a time varying fitness function [12]. 

Finally, note that the computational effort for 
computing a solution only increases polynomially 
with the number of points under exam, which makes 
EvoPose2 scale-up behavior suitable for real images, 
where hundreds of points may need to be considered. 
Figure 3 shows the pseudo-code of a typical 
Evolutionary Algorithm, which has been adopted for 
EvoPose2. After a set of tuning runs, the 
configuration described below has been adopted. 
• Type: generational. All population is replaced at 

each generation (cf. Fig. 3). Population size: 50 
individuals 

• Crossover: standard single-point. Rate: 0.6 
• Mutation: uniform random perturbation. Rate: 

0.9; range 50% or 5% (see below). 
• Selection rule: proportional roulette (each 

individual is selected for reproduction with a 
probability proportional to its fitness). 

• Elitist selection mechanism, which copies the 
best individual of a population to the population 
of the next generation. 

• Chromosome type: seven real valued genes. 
 

Besides the basic EA algorithm, EvoPose2 
incorporates some heuristic rules in order to 
improve its performances. 

• Tolerance. Given a model, a value called 
tolerance is computed projecting the model in a 
way that it is centered in the camera plane, at 
half the maximum allowed distance. Then, it is 
slightly translated and rotated along the three 
axes, and the mean distance from the original 
position is added up. Tolerance represents a 
threshold over which we consider the mean 
distance is “close enough” with the aim of the 
tolerance parameter is to capture the notion of 
visual closeness of the projected model to the 
target image. Based on this, the algorithm 
terminates or takes one of the following actions. 

• Varying mutation range. Mutation is the 
operator mainly devoted to exploration. At the 
beginning of the search the algorithm is 
expected to explore the whole interval, and 
mutation is set to vary randomly in the whole 
search space (range 50%). When the mean 
distance becomes smaller than the tolerance, it 
means that the algorithm is close to the solution. 
In this case it is desirable to reduce exploration, 
and focus on the exploitation of the region. 
Thus, perturbation range of mutation is lowered 
(range 5%), i.e. genes are only slightly modified, 
to look for better solutions in the neighborhood. 

• Kick out. Whenever the algorithm has 
converged, but the mean distance is bigger than 
the tolerance, it is assumed that the algorithm 
got stuck into a local minimum. Since the 
population has not enough diversity, there is 
little hope to escape the basin of attraction of the 
local optimum. Then the algorithm is reset and 
the search is restarted from scratch. 

 
 

3   Experimental Results 
In order to assess the effectiveness of the proposed 
approach, a number of experiments have been 
performed. This section reports the results obtained 
for a subset of the images (see Fig. 4 and 5) used 

Procedure EVOLUTIONARY_ALGORITHM 
BEGIN 
 t := 0; 
 initialize P(t); 
 evaluate P(t); 
 WHILE (NOT termination-condition) 
DO 
  BEGIN 
   t := t+1; 
   WHILE (|P(t)| < |P(t-1)|) DO 
    BEGIN 
     select parents from P(t-1); 
     recombine parents 
     mutate children 
     evaluate children 
     insert children into P(t) 
    END 
  END 
END 

 

Fig. 3  Pseudo Code of the Evolutionary Algorithm 

 
  

(a) Sat 1 
(20x100x20) 

(b) Sat 2 
(50x50x135) 

(c) X-Wing 
(190x150x60) 

 
Fig. 4.  Some of the synthetic images used to test EvoPose 

 (dimensions in centimeters) 
 

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Robotics and Automation, Madrid, Spain, February 15-17, 2006 (pp52-57)



during the testing of the EvoPose2 algorithm. All 
values are average over ten runs with randomly 
generated rotation angles and translations.  

 
3.1 Tuning with Synthetic Images 
Table 1 reports the results of the first set of 
experiments, aimed at tuning the algorithm. For each 
column, the success rate is reported along with the 
error in the localization (translation and rotation) and 
the computational efforts needed to find a solution 
(convergence time and number of chromosome 
evaluations) for the models reported in Fig. 4.  

As it can be seen, the algorithm can easily 
find the correct model and pose. As can be expected, 
it is more difficult to find the correct orientation than 
the position. Normally, the algorithm converged very 
rapidly to the area where the points were located, and 
spent most of the time trying to find the correct 
orientation of the model. The correct model is also 
usually found in the very early stages of the search. 

For what the kick outs is concerned, we noticed 
that most of the times they occurred when the 
algorithm was trying to match the wrong model. In 
this case of course it is extremely difficult (although 
not impossible) that an orientation exists such that the 
wrong model matches well the set of points, and after 
some attempts the algorithm decides that it is stuck 
and retry from scratch. As explained above, this 
decision depends on the tolerance value. Much effort 
was devoted to tune this heuristic rule, as it turned out 
to be a critical choice, in contrast with the other 
standard EA parameters, which settings did not 
appear to have a great impact on the performances. 
 
3.2 Application to Real Images 
For the second set of experiments we applied 
EvoPose2 to our concrete case, the localization and 
inspection of satellites from B/W camera images. In 
order to detect macro defects from the appearance of 
the spacecraft we used different configurations of the 
model, one for each typical defect of a given satellite. 
According to which model best matches the image, 
the algorithm can tell which can be the problem. Fig. 
5 shows the three configurations used: (a) normal, (b) 
missing (or unopened) solar array and (c) partially 
opened solar array, together with a picture showing 

the set of points fed to the algorithm and a good 
matching pose/model.  
 Using real images makes the pose problem 
harder, mainly because of the highly noisy 
information (points) provided to the algorithm. 
Nevertheless, EvoPose2 has demonstrated a 
satisfactory behavior for what the task of recognition 
is concerned, although the nature of the points (many 
‘false positives’) and the fact that the three models 
were similar caused the algorithm do misclassify 
some instances.1 Table 2 summarizes the results. The 
precision of the pose could not be as good as the 
previous experiment, especially for what orientation 
is concerned.  
 
 

4   Discussion and Conclusion 
The application of the proposed algorithm to real 
images, as expected, has raised some issues, which 
we are currently addressing. 

Although the precision of the localization can 
be improved by imposing stricter tolerances, we do 
not consider this fact very important for our purposes, 
since search will be refined in al later moment: 
EvoPose2 works in real time (has no termination 
criterion) and will constantly be working as new 
images are provided, either because the relative 
position of chaser/target has changed, or because its 
output has been used to control the camera for a 
better view (“zoom and center”) .  

From the algorithmic point of view, we believe 
the precision of the pose has worsened mainly due to 
the poor quality of the extracted features. However, 
let us point out the following issues: 
• The precision of the localization can be improved 

by imposing stricter tolerances, at cost of higher 
running times. 

• Working in space has the advantage that the 
absence of atmosphere makes the image sharper, a 
fact that benefit the feature extraction process. 

• Many non-corner points were present: it will be 
important in the future to use this information as 
feedback to construct the model according to 
output of the feature extraction process, including 
all the points that appear typically.  

                                                             
1 When the algorithm could not converge in less than 10 seconds 

the instance was considered misclassified. In this case only the 
current model was returned as answer, discarding the pose 

Table 2. Results of experiment 2 (average over 10 runs) 

Model Matching 
model 

Trans 
(cm) 

Rot 
(deg) 

t 
(sec) 

Chrom. 
Evals. Kicks 

a a:9  b:1  c:0 1.28 12.9 2.35 5244 0.2 
b a:2  b:8  c:0 0.82 16.3 1.74 2595 1.5 
c a:1  b:1  c:8 1.28 17.3 2.18 8270 2.5 

       

Table 1. Results of experiment 1. (average over 10 runs) 
Model SR Trans 

(cm) 
Rot 

(deg) 
t 

(sec) 
Chrom. 
Evals. 

Kicks 

(a) 100% 1.26 9.40 2.12 10478 1.4 
(b) 100% 1.68 3.67 1.53 10228 1.0 
(c) 100% 0.76 4.73 1.01 3765 0.2 
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The presence of poor local minima can result in 
misclassifications and bad localization. This can be 
due to the use of the mean distance alone as 
optimization function. A way to overcome this 
problem would be to incorporate other problem-
specific information such as color and light 
information. We are currently working on this aspect. 

Also, the integration with other sensing devices (e.g. 
laser for distance), would help the search.  

The improved version of the proposed algorithm 
will be used in a 3D object tracking application 
developed in our Laboratory (see Fig. 6) and could be 
applied to other vision systems in robotic applications 
such as visual servoing and vision based navigation. 

 
 

 

 
a 

 

 
b 

 

 

 

c 

              Fig. 6.  Test Platform 

 
Fig. 5. An application to real images for defects detection 

 (model dimension: 38x3x3.7 cm) 
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