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Abstract: - In this paper we present an alternative to exhaustive search algorithms for calculating the maximum 
amplitude of limit cycles in fixed-point digital filters. This algorithm allows us to obtain results quite similar to 
the corresponding exhaustive procedures but taken significantly shorter time of computing. This important 
improvement is obtained due to the normal behavior of high stability filters, that present all limit cycles in a 
confined area. The aim is to get this area as soon as possible since all limit cycles are placed there. The good 
performance of the algorithm is summarized in two different tables that compare the results with classical 
exhaustive formulations and other early algorithms. They are obtained after analyzing several filters 
corresponding to different structures, various approximation functions and under different quantizations 
conditions. This variety shows the general-purpose character of the algorithm. 
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1   Introduction 
It is well known that in all practical implementations 
of digital signal processing algorithms have to cope 
with finite register length. These lead to impairments 
of the filter performance that become visible in 
different ways.   One of these ways, in the context of 
recursive filters realised with fixed-point arithmetic, 
is a permanent oscillation at the output and inner 
registers of the filters, called limit cycles. 
     The occurrence of these parasitic oscillations 
under zero input conditions is especially critical 
because the signal-to-noise ratio is affected 
dramatically. Therefore, predicting the behavior of 
the final digital filter implementation under finite 
wordlength conditions must be an integral part of a 
filter design procedure.  
     In particular, it is desirable not only to be able to 
predict if a digital filter is free or not of these limit 
cycles, i e, (G.A.S) [1] but also to know the 
maximum amplitude and period of them, in order to 
evaluate the actual performance of the chosen 
structure for the application. 
     However, the main problem of this subject is its 
random character, since it's impossible to know the 
inner operations previously. 
     So far, most of studies are analytic, where upper 
theoretical bounds have been given [1,2,3,4,7], but 
they normally lead to quite conservative results and 
in general are very difficult to obtain by 

computational methods. Therefore they are useful for 
certain forms, types of quantization and order of 
digital filters. In some cases an exhaustive search 
algorithm is suggested, where all possible initial 
states of the filters are tested until any of these 
theoretical bounds [1,7]. In this way the actual upper 
bound for limit cycles of digital filters is obtained 
and, it can be shown that in all cases they are quite 
smaller than its corresponding theoretical ones. This 
is due to analytic formulation in general considers the 
worst case analysis. But one serious problem 
encountered in these exhaustive methods is to carry 
out the procedure in a reasonably short computation 
time, since the test of each initial state until a great 
and conservative theoretical bound take long time. 
Besides with these treatments initial calculations of 
filters must be taken so most of them are only useful 
for certain structures or order of filters. 
     Other early formulations test only a strategic set of 
initial vectors for each filter [6].  
     This paper focus the study of these parasitic 
oscillations and present an alternative algorithm for 
detecting the maximum actual energy that the filter is 
able to keep in their inner registers in some limit 
cycle. Besides, this algorithm is independent to the 
order of the filter, type of quantization, structure and 
do not need any initial theoretical calculation with the 
filter. 
     However, this algorithm is able to characterize the 
impact of limit cycles due to in searching the upper 
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bound, most of limit cycles are detected. So, because 
the fast performance, this algorithm can be used to 
take part of other algorithms where some techniques 
of optimizations are proved and where it is necessary 
to test several times the behavior of filters and the 
time is in concern. 
     In what follows, the algorithm flowchart is shown 
and at the end, some results with several filters, 
orders and type of quantizations are presented to 
confirm the good performance of the algorithm over 
other early formulations and theoretical standpoints. 
 
 
2   Maximum Amplitude Algorithm 
After several filters analyzed, it has been observed 
that limit cycles detected in most of them present low 
amplitudes and in general, are confined in very tight 
area. For example, the following figure shows that 
several cases of different structures of filters, under 
certain quantization conditions present all state 
vectors belonging to limit cycles confined in a region. 
Besides, as can be observed, the amplitude in each 
inner register (normalized by quantization step size 
q=2B-1, where B is the number of bits used) is in 
general very low (except for filters with low stability 
margin). 
     Therefore, in this paper a new fast algorithm is 
proposed following this characteristic. So the aim is 
to reach as soon as possible the zone where limit 
cycles are placed by updating the state vectors to test 
according to the amplitude stored in limit cycles 
detected. In this zone it is likely that all limit cycles 
are detected and mainly the one that is able to store 
the maximum amplitude at inner registers. This will 
determine the actual bound searched, instead the 
theoretical one calculated in [1,2,3,4]. As we can see, 
the actual performance of the filter under certain 
quantizations conditions will guide to characterize 
these parasitic oscillations. 
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Fig. 1: state vectors reached in all limit cycles 
detected in a lattice in states space scaled eliptic 
digital filter under 16 bits in rounding truncation. 
2.1   Algorithm formulation. 

Due to the generic use of procedure, we represent a 
filter by its difference equations, which obtain the 
current value of each internal node of computation. 
With a convenient ordering of internal nodes we can 
express the difference equation in each internal node 
as: 

[ ] [ ] [ ]( )
1

[ ] -1
N

j m j m m j
m

x k u k a x k b x k
=

= + ⋅ + ⋅∑ m  
 
(1) 

Where: 
• N: number of internal computable nodes in the filter. 
• j: Internal node of computation. 
• [ ]jx k : Amplitude of jth node in the kth iteration. 
• : Transmission coefficients of the branch 

connecting node m to j. 
,m j m jb a

• u[k]: input signal injected in node j. 
 
Working with fixed-point arithmetic precision any 
stored value is quantified to a integer value multiple 
of quantization step. So the form (1) turns to: 
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(2)

where the process can be signed-magnitude, two's 
complement truncation or rounding and a double 
precision accumulator is considered. Also zero-input 
is considered. 
     In this way, any filter and type of quantization can 
be considered and we'll obtain the actual information 
about the filter behavior in a processor. 
     According to the considerations about the limit 
cycles behavior above, the following algorithm is 
proposed to detect the maximum bound of the limit 
cycles and to characterize the performance of the 
digital filters under any quantization conditions and 
any type of filter (structure, order, approximation...). 
 
NOMENCLATURE 
• B: number of bits used in implementation. 
• q=2-B+1: quantization step size. 
• N: number of internal computable nodes in the 

filter. 
• : number of storage nodes. A
• γ(i) =x | xk ∈ { +i,0,-i}; x={xk}; 

k=1... ,i=1...2A B-1 
• h: free parameter to guarantee the robustness of 

the algorithms. 
• j: orbit formed by all states in limit cycle 

detected in test j, j=1 up to 2B-1, as in fig. 1. 
• O=  j=1 up to a maximum of  2∪

j

jO B-1. 

• Mi= max |xk| ; x=xk , k=1,2,... A ,x∈ O. 
• M=  Mk ; k=1,2,... A . Practical bound 

calculated. 
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     The flowchart in figure 2 shows the process for 
the algorithm. 
     The guided process consist in testing state vectors 
of increasing norms (only belonging to γ(i)), form 
norm 1 as in exhaustive procedures [1,2], but whereas 
limit cycles are detected, the bound M is updated 
with new information of detected cycles. 
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Figure 2: Flowchart of the proposed algorithm. 

 
      As show the figure, if the new norm is upper than 
previous one, is updated and force to prove state 
vectors of norm i=||M||∞+1. In this way is being tested 
the maximum amplitude that the filter is able to store 
with zero input. The process ends when have been 
proved state vectors of greater norm than the bound 
M plus the free h norms. This is due to, as in [1], all 
states with upper norm to a certain bound (actual 
bound of the filter and quantization) map to states 
lower that bound. 
     It is worthy of note that as greater the set of state 
tested of each norm, better the result, but in most 
cases where limit cycles are very tight is not 
necessary to test all vectors of each infinite norm and 
a compromise solution is only to test the initial 
vectors multiples to norm 1 (γ(i)). 
     The box indicated as “Test the convergence” 
involves to test if the filter map to zero state or a limit 
cycle from the initial state considered evaluating the 
difference equation with zero imput. This process is 

developed by optimized DSP-Oriented algorithm 
shown in [5]. 
 
 
3   Results 
In following tables some results are presented to 
demonstrate the good performance of the proposed 
algorithm over an exhaustive search [1] to detect the 
maximum bound of the limit cycles and even to 
characterize all limit cycles that appear in the filters, 
due to the fact that in most cases they are confined in 
a simple area. 
     As we can see, the algorithm are useful for any 
kind of filter, order, approximation, structure, type of 
quantization... 
 
 Exhaustive Fixed  Alg. Prop.Alg. 
  Time States Time States  
Filter 1 37 <1 416 <1 49 
Filter 2 2021 2 1280 <1 130 
Filter 3 >9469 8 3872 <1 197 
Filter 4 >237770 34 11648 1 387 
Filter 5 >83334 116 34976 2 777 

Table 1: time in seconds and number of state vectors 
tested in fixed algorithm[6] and proposed. It has been 
used a Pentium IV 2,4 Ghz processor. 
 
     Table 1 shows the time required to perform the 
analysis and as we can see, the proposed algorithm 
time is significantly shorter than the corresponding 
analysis by exhaustive search and fixed algorithm [6]. 
Also we can see the guided character of the proposed 
algorithm by the different number of tested states 
depending on the actual performance of the filter 
instead the fixed algorithm that performs the analysis 
of a fixed set of vectors without taking account the 
actual behavior of the filter.  
     Also the table 1 shows that such exhaustive search 
lead to a loss of time because testing the convergence 
of all possible vectors up to a theoretical bound, 
usually very conservative. However, as these 
algorithms show, is sufficient to test only some 
strategic state vectors around an area. But as in 
general this confined zone is unknown, this algorithm 
is guided to detect it.  As we can see the time in 
exhaustive search required in filter 4 and 5 seems 
some odd, but it is due to the algorithm used to detect 
each limit cycle from a state vector. In this case all 
analysis are realized by the algorithm proposed in [5], 
where the stability of the filter force the process 
speed. 
     Table 2 shows the good performance of the 
algorithm since no errors in these general proposed 
filters occur (besides, the amplitude in each inner 
register is presented). For simplicity all the values at 
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the inner registers are expressed as integers multiples 
of the quantization step. In all cases 16 bits and 
saturation are used. 
     Besides it can be tested that the theoretical upper 
bound (obtained from the shorter of [2,3,4]) is quite 
greater than actual bound, so the actual maximum 
amplitude lead to the behavior of the filter. 
 
 Theoretical 

Bound 
Exhaustive 
Alg. 

Fix. 
(M) 

Prop. 
(M) 

Filter 1 
Two’s C. 
Truncation 
Ladder 
WDF(Fetweis) 
[6] 
Butterworth 















16
203
16

 

















1
49
1

 

















1
49
1

 

















1
49
1

 

Filter 2 
Rounding 
WDF CGIG 
Butterworth 



















11
197
9
98

 



















0
29
0
27

 



















0
29
0
26

 



















0
29
0
27

 

Filter 3 
Rounding 
Ladder 
WDF(Lawson) 
[5] 
Butterworth 























24
24
24
24
23

 























3
3
3
3
3

 























3
3
3
3
3

 























3
3
3
3
3

 

Filter 4 
Rounding 
WDF CGIG 
Direct 
Chebyhev 

























10
72
17
51
11
21

 

























1
6
2
8
2
4

 

























1
6
2
8
2
4

 

























1
6
2
8
2
4

 

Filter 5 
Two’s C. 
Truncation 
Direct 2 Form 
Direct 
Chebyhev 




























24
24
24
24
24
24
23

 





























4
4
4
4
4
4
4

 





























4
4
4
4
4
4
4

 





























4
4
4
4
4
4
4

 

Table 2: Comparative of Maximum bound obtained 
by theoretical calculations, exhaustive methods, 
algorithm in [6] and the proposed algorithm. 
 
 
4   CONCLUSIONS. 
The present algorithm is valid for the analysis of limit 

cycles in any digital filters under any type of 
quantization conditions. Besides, they are valid not 
only to detect the maximum actual bound of limit 
cycles but also, and given the normal configuration of 
these parasitic oscillations, to characterize the 
behavior of the filter.  
     The low time required to complete the process 
make it useful to take part of other algorithms to 
optimize the performance of the filters. 
     Besides, the guided character of the algorithms 
make unnecessary initial considerations of the filters, 
as in other exhaustive algorithms [1],[2]. This guided 
character implies that the time and number or vectors 
tested only are representative to compare algorithms 
with the same filter.  
     For the reasons above, is evident that exhaustive 
search algorithms up to certain conservative 
theoretical bound are inefficient for most filters. 
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