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Abstract :-The aim of this work is the parameter estimation of correlated serial disturbance 
measurements of output data structure from continuous chemical processes. The chemical 
process is simulated with HYSYS simulator to obtain the dynamic response of outputs when 
random disturbances implicate the process inputs. Then, stochastic models are applied to take 
into account these unexplained disturbances, with the scope of monitoring the product quality. 
As an illustration, the approach is applied to the water concentration output of a Propylene 
Glycol plant composed by a CSTR (continuous stirred tank reactor) and a distillation unit, when 
stochastic perturbations are introduced into the feed molar flows. The proposed statistical 
approach proves to be satisfactory to predict the correlative data structure and in addition, it 
allows to forecast future variable values after identifying a given data pattern.  
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1   Introduction 
The typical industrial chemical process 
consists of an interconnected network of 
individual processing units. The inherent 
inertial components present in it, the 
transportation lag due to flow through 
connecting pipes and the fact that many 
process variables of importance are sampled 
and measured frequently, are some of the 
elements, among others, that promise that 
current observations are strongly related to 
past observations. Then, measurements of 
controlled process variables are seriously 
correlated.  
 
The most important effect of serial 
correlation in data processing is that all the 
underlying assumptions (independence of 
observations; normally and independently 
distributed random data) behind traditional 
charting methods of statistical process 
control (SPC) break down. Specifically, 
these conventional control charts will give 
misleading results in the form of many false 
alarms. Therefore, statistical techniques  used 
as tools to monitor the variability of a given 
process and to anticipate and/or identify 
process changes before adverse results occur, 
are generally inadequate for monitoring 
quality of continuous flow processes 
[1][5][6].  

2 Case Study: Propylene Glycol 
Plant 
The methodology is applied to a propylene 
glycol plant [7]. In this process, propylene 
oxide and water react to produce propylene 
glycol in a continuous stirred tank reactor 
(CSTR). The products of the reaction are 
then separated in a distillation tower. The 
process is closed loop stable by means of 
four control loops controlling the reactor 
temperature, reactor liquid level, column 9 
tray temperature and condenser pressure.  

Fig. 1. Flow diagram of Propylene Glycol process 
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Dynamic responses of process variables are 
obtained by dynamic simulation, when 
random perturbations are introduced on the 
feed molar flows. 
 
2.1 Preliminary Statistical Analysis 
In this study, the time series analyzed, is the 
result of 200 observations per each minute of 
simulated water output concentration. The 
statistical information about this data is 
obtained by the measurements of the sample 
autocorrelation function (ACF) and the 
sample partial autocorrelation function 
(PACF). 
 

 

Fig.2   Destillation column outlet water     
concentration 

 
The disturbances presence produces a 
tendency of many processes variables to drift 
away from their target values. These 
disturbances may be of deterministic nature, 
such as steps, exponential rises, etc., to a new 
level value, or they may be of a more random 
nature. Most often, we cannot partition the 
process variable into systematic component 
and random component. This is known as a 
state variable description. Instead, a 
realization of a process is observed. In such 
instances, we can mathematically model 
these process variables by difference 
equations or time series models [2] [6]. 
 
2.2. Dynamic Stochastic Models 
 
The general mixed ARIMA( p, q ) process is: 

 
φp (B) (1-B)d  Yt =  θo  + θq (B) at                     (1) 
 
where the stationary operator AR is 
 
φp  (B)= 1-φ1 B- ......... -φp Bp                      (2) 
 

and the invertible operator MA is 
 
θq (B)= 1-θ1  B - .......-θq Bq                        (3) 

with the introduction of the backshift 
operator Bj yt = yt-j . 
 
The p and q are used to indicate the orders of 
the associated autoregressive and moving 
average polynomials, respectively, and { at } 
is a white noise process with mean zero and 
variance σa

2. (We assume at is normally 
distributed, that is, at ∼ N(0, σa

2).) 
 
{φi } and {θi } are the coefficients of MA (p) 
and AR(q) polynomials. 
More generally, the differenced series (1-B)d 
follows the stationary ARMA(p,q) process. 
For some d > 0 where  φ (B ) is a stationary  
autoregressive operator.  
Thus, an homogeneous nonstationary series 
can be reduced to a stationary series by 
taking a suitable difference of general series. 
Equation (1) is known as an Autoregressive 
Integrated Moving Average (ARIMA) model 
 of order (p,d,q) [11]. 
 

Fig.3: (a) Sample ACF. (b) Sample PACF 

It can be observed that both sample ACF and 
sample PACF tail off and the observation 
pattern is characterized by correlative 
structure. The target is to find an adequate 
time series model, which represents the 
variability of simulated data referred to water 
concentration outputs. The methodology here 
proposed take into account the stochastic 
behavior of the process outputs which 
includes: (i) to model the correlative 
structure; (ii) to use the chosen model to 
remove the autocorrelation from data; (iii) to 
apply control charts to the residuals and 
eventually (iv) to forecast future variable 
values after identifying a data pattern [9].  

3 Modeling the Data Correlative 
Structure 
Water outputs are analysed in attempt to 
identify a data pattern and to determine 
whether data is correlated. The sample 
autocorrelation function (ACF) and the 
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sample partial autocorrelation function 
(PACF) of the original series (Fig. 3), gives 
an indication of the orders of AR or MA 
processes an also, an idea about a trend, 
nonconstant variances, or other nonnormal 
and nonstationary phenomena. This 
understanding provides a basis for 
postulating data transformation. 
An appropriate transformation is applied, to 
lead them at the stationary form. 
Differencing of order d=1 was a suitable 
difference and the proposed models were 
estimated by SAS System [10] and checked 
with the help of various diagnostic statistics 
that indicate how well the models fit data. 
 
Possible candidate models: 
Model A: 
{φi } {0.748525, -0.472845} and   

{θi } {-0.0706612}, where σa
2 3.043 10-10  

Model B:  
{φi } {0.66263,-0.43047}, and  

{θi } {-0.042946 }, where σa
2 2.961 10-10  

 
3.1 Model fitting procedure 
The adequacy of each model is checked by: 
looking at the behavior of the residuals of a 
fitted ARIMA(p,d,q) process (if them 
appears to be a stationary random sequence), 
through the Portmanteau test and the chi-
square statistics used in the test for lack of 
fit, computed using the Ljung-Box formula . 
The  χ2   test statistics for the residuals series 
indicates whether the residuals are 
uncorrelated (white noise) or contain 
additional information that might be used in 
a more complex model. The hypothesis that 
the residuals are uncorrelated shown by the 
χ2    tests, can or cannot be rejected.  
 
3.2  Diagnostic checking 
The conditional least square estimation 
method used allows us to know the model 
parameter estimates (the estimated value for 
each parameter and the standard error and t-
value for the estimate). As t-values obtained 
for autoregressive parameters are highly 
significant (t >> 2) for both proposed models 
and standard error estimates are also 
satisfactory, both models are adequate to 
describe the variability of water 
concentration in the output product. Besides, 
parameter estimates are not highly correlated, 

so co-linearity may not have influenced the 
results.  
As in general, when comparing candidate 
models, smaller AIC (Akaike’s Information 
Criterion) and SBC (Schwar’s Bayesian 
Criterion) statistics indicate the better fitting 
model, model A, ARIMA (2,1,1) resulting to  
be better according to its lower values for 
these statistics.  
In addition, autocorrelations of residuals 
allows us to check the goodness of fitting 
models. The chi-square statistics for series 
residuals, which is computed using the 
Ljung-Box formula, indicates whether the 
residuals are uncorrelated (white noise) or 
not.  In this study case, the χ2   test values do 
not reject the no-autocorrelation hypothesis 
of the residuals [12].  
In summary, since the model diagnostic tests 
show that all the parameter estimates are 
significant and the residual series is white 
noise, the estimation and diagnostic-checking 
stages are complete. Thus, the resulting 
ARMA (2,1,1) model is: 
 
(1 - 0.748525 B ) +(1+0.472845B)  
(1-B) Yt=(1 + 0.0706612 B) at                                  (4 )                                      

 
This processes can be expressed:  
(1 - 0.27568 B - 0.353936 B2 ) (1-B) Yt = 
(1 + 0.0706612 B  ) at                                                    (5) 

 
Then 
Yt= 1.27568 Yt-1 +0.078256 Yt-2 -0.353936 
Yt-3 + at + 0.0706612 at-1                                                  (6) 

 
The Eq.(6) expressed the present process 
value Yt through the previous values and the 
present and previous values of at . 
 
The Box-Jenkins methodology requires that 
the model to be used in describing and 
forecasting a time series be both stationary 
and invertible [3]. These properties were 
analyzed with satisfactory results, so we 
proceed to forecasting values of the water 
output concentration. 

4 Forecasting 
The forecasting technique produce the 
forecast points, the forecast errors and the 
prediction interval forecast that are 
established in our case at 95% of confidence. 
This information is showed through the plots, 
(Fig. 4) where the point lines represent the 
adjusted series and the confidence intervals. 
The series values and the points forecasts are 
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showed at 200 th observations and continue 
ten values ahead.  
The accuracy of these predictions by the 
mean absolute deviation was measured, 
which is simply the average of the absolute 
deviations for all forecasts, with the 
simulated techniques in which the historical 
dates were forecasted choosing models A y B 
to see which of them provides the most 
accurate simulated prediction. Also we 
control the residuals values that are obtained 
comparing the date series and the adjusted 
series.  

Fig. 4: Water concentration forecasts 

Finally we must point out that the forecast 
points should be considered at the work 
confidence interval to take right decisions 
[4].  

5 Conclusion 
Having tentatively identified a model 
describing the water concentration outputs at 
the destillation unit; it can expressed another 
time series generated by the model in order 
to develop a control scheme for the 
propylene glycol production to detect special 
events.  
Thus the forecasting model will give 
forecasts points and a prediction interval 
forecasts which follow the trend of the 
sample values; these results allow us to 
identify randomly different occurring steps 
changes simulated in the process, in order to 
design a control algorithm to satisfy a desired 
objective. In the case of product quality 
control, a reasonable objective is to try to 
minimize the variance of the water output 
concentrations from the target. 
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