
Frequent Nodesets by Swarm

KYAW MAY OO
University of Computer Studies, Yangon

MYANMAR

Abstract: - We present a framework of Swarm Technique application algorithm for frequent nodesets. This
framework is based on recent research on the behaviour of real ant colonies, a field of Swarm Intelligent. The
aim of proposed framework algorithm is to extract frequent nodesets for association rules discovery from data.
The proposed algorithm is discussed from the frequent itemsets finding point of view in association rule
discovery. A procedure for generating strong association rule from frequent itemsets is our ongoing research
and will be presented in our near future paper. At present, a fundamental part of our ongoing research is
presented in this paper. We compare the performance of proposed algorithm with the performance of the well-
known original Apriori algorithm. The accuracy of proposed algorithm is competitive with that of Apriori.
Moreover, our system has found considerably simpler nodesets.

Key-Words: - Ant Colony Optimization, Association Rule, Frequent Itemset, Data Mining, Swarm Intelligent

1 Introduction
Swarm intelligence is a field which studies “the
emergent collective intelligence of groups of simple
agents” [1]. In groups of insects, which live in
colonies, such as ants and bees, an individual can
only do simple tasks on its own, while the colony's
cooperative work is the main reason determining the
intelligent behavior it shows. Ant Colony
Optimization (ACO) [4] is a branch of a newly
developed form of artificial intelligence called
swarm intelligence.

Knowledge discovery in databases (KDD) is the
process of extracting models and patterns from large
databases. The term data mining (DM) is often used
as a synonym for the KDD process, although strictly
speaking it is just a step within KDD. DM refers to
the process of applying the discovery algorithm to
the data. In [8], KDD is defined as “… the process
of model abstraction from large databases and
searching for valid, novel, and nontrivial patterns
and symptoms within the abstracted model".

There has been a great interest in the area of data
mining, in which the general goal is to discover
knowledge that is not only correct, but also
comprehensible and interesting for the user [5]. In
DM, discovered knowledge is often represented in
the form of X ⇒ Y association rules. The rule
contains a logical combination of predictor
attributes, in the form: term1 AND term2 AND
Each term is a triple <attribute, operator, value>,
such as <Gender = female>.

Rule Discovery is an important DM task since it
generates a set of symbolic rules that describe in a
natural way. The human mind is able to understand
rules better than any other data mining model.
Hence, the user can understand the results produced
by the system and combine them with their own
knowledge to make a well-informed decision, rather
than blindly trusting on a system producing
incomprehensible results. However, these rules need
to be simple and comprehensive.

Association rule mining is a two-step process: 1)
Find all frequent itemsets, and 2) Generate strong
association rules from the frequent itemsets.

To the best of our knowledge the use of Ant
Colony Optimization [3] as a method for finding
frequent itemsets in association rules discovery, in
the context of data mining, is a research area still
unexplored by other researchers.

Actually, the Ant Colony algorithm developed for
data mining that we are aware of is an algorithm for
clustering [7], which is, of course, a data mining
task very different from the task addressed in this
paper. Also, Cordón et al. [2] have proposed another
kind of Ant Colony Optimization application that
learns fuzzy control rules, but it is outside the scope
of data mining. Next, Ant-Miner is Ant Colony
algorithm for classification rule discovery [6] which
is also a data mining task very different from the
association rule discovery task.

We believe the development of Ant Colony
algorithms for data mining is a promising research

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp423-428)

area, due to the following rationale. An Ant Colony
system involves simple agents (ants) that cooperate
with one another to achieve an emergent, unified
behavior for the system as a whole, producing a
robust system capable of finding high-quality
solutions for problems with a large search space. In
the context of rule discovery, an Ant Colony system
has the ability to perform a flexible, robust search
for a good combination of logical conditions.

This paper is organized as follows. The second
section introduces the framework of Ant Colony
system for discovering frequent nodesets (itemsets)
proposed in this work. The third section describes
the experimental results evaluating the performance
of the proposed system and the generating of
nodesets. Finally, the fourth section concludes on
this work and discusses further directions for future
research.

2 Ant Colony System for Discovery of

NodeSet
In this section we discuss in detail our proposed
framework system for discovery of nodeset. This
section is divided into 5 parts, namely: an overview
of our proposed system framework, nodeset
construction, case pruning, pheromone updating,
and system parameters.

2.1 An Overview of Proposed System

Framework
Recall that each ant can be regarded as an agent that
incrementally constructs/ modifies a solution for the
target problem. In our case the target problem is the
discovery of frequent nodeset. The proposed system
is discussed from the frequent itemsets finding point
of view in association rule discovery. Thus, in the
rest of the paper, terms in the association rule and
(frequent) itemset are referred to nodes and
(frequent) nodeset, respectively.

We assume that all the transaction of dataset D be
the existing path (i.e. already constructed nodesets)
of traveling spaces S traveled by ants. So to
determine the deposited amount of pheromone, let a
colony of ants be traveled over S. After that
pheromone deposited amount on each node of each
trial is updated and iteration is started again. Thus
after the ant traveled the whole paths in S, we can
start to find the desired frequent nodesets by using
the clue of the previous ants.

Each ant starts with an empty nodeset and adds
one node (one term) at a time to its current partial
nodeset. The current partial nodeset constructed by
an ant corresponds to the current partial path
followed by the ant. Similarly, the choice of a node
to be added to the current partial nodeset
corresponds to the choice of the direction to which
the current path will be extended, among all the
possible directions (all nodes that could be added to
the current partial nodeset). The choice of the node
to be added to the current partial nodeset depends on
the amount of pheromone associated with each
node, as will be discussed in detail in the later
subsections. An ant keeps adding nodes one-at-a-
time to its current partial noteset until the ant is
unable to continue. This situation can arise in two
cases, which are discussed in next section. When
one of these two stopping criteria is satisfied, the ant
has built a frequent nodeset (i.e. it has completed its
path), and in principle we could use the discovered
nodeset for generating the association rule.

This process is repeated for at most a predefined
number of ants, as a parameter of the system, called
No_of_ants. However, this iterative process can be
interrupted earlier, when the constructed nodeset is
equal to one of the discovered nodesets.

From above nodesets generated by ants, we have
to determine that these generated nodesets are
frequent or not. To do this, we use the original
dataset again. After that the frequent nodesets can be
defined.

Then all cases correctly covered by the just
discovered nodeset are removed from the dataset.
Hence, the proposed system is called again to find
additional possible nodesets, if necessary, in the
reduced dataset. So another additional ants start to
construct other possible nodesets, using the new
reduced dataset.

Note that the non-existing nodes in the dataset
after pruning (removing) some cases should be
deleted as it is not necessary to travel to non-
existing nodes. By doing so, ants have to choose
only existing nodes in the dataset and it make the
system more efficient.

This process is repeated for as much iteration as
necessary to find nodesets covering almost all cases
of the dataset. More precisely, the above process is
repeated until the constructed nodeset is equal to
one of the discovered nodesets. A summarized
description of the above-discussed iterative process
is shown in the proposed system framework of

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp423-428)

Figure 1.
When constructed nodeset equals to one of the

discovered nodesets, the searching process stops. At
this point the system has discovered several
nodesets. The discovered nodesets are stored in an
ordered rule list (in order of discovery).

Fig.1 Overview of proposed system framework

2.2 Nodeset Construction
Let nodei be the current node in current partial
nodeset traveled by ant. The probability that nodej is
chosen by ant-k to be added to the current partial
nodeset is given by equation (1).

⎩
⎨
⎧ ∈τ

=
.otherwise , 0

;Nnode if ,)t(
)t(P ijijk

ij (1)

where τ ij(t) is the amount of pheromone currently
available at time t in the transition i, j of the trail

being followed by the ant, and Ni is the set of one-
step neighbors of nodei.

The amount of pheromone τ ij(t) is independent
of the nodes which already occur in the current
partial nodeset, but is entirely dependent on the
paths followed by previous ants. Hence, τ ij(t)
incorporates an indirect form of communication
between ants, where successful ants leave a “clue”
(pheromone) suggesting the best path to be followed
by other ants. When the first ant starts to build its
nodeset, all trail transitions i, j have the same
amount of pheromone. However, as soon as an ant
finishes its path the amounts of pheromone in each
position i,j visited by the ant is updated, as will be
explained in detail in a separate subsection later.
Here we just mention the basic idea: the better the
quality of the nodeset constructed by the ant, the
higher the amount of pheromone added to the trail
positions visited by the ant. Hence, with time the
“best” trail positions to be followed – i.e. the best
nodes (attribute-value pairs) to be added to a
nodeset – will have greater and greater amounts of
pheromone, increasing their probability of being
chosen.

Begin
dataset ← all data;
ε ← min-pheromone;
θ ← #ants;
Do
 k=0;
 Repeat

k = k+1;
Ant-k travels existing predefined nodesets;
Update pheromone amount of trial followed by
Ant-k;

Until((end of existing predefined paths)or(k > θ))
While (! end of existing predefined paths)
Define one-step-neighbours for each node;
Do
 k=0;cont=T;
 Repeat

k = k+1;
Ant-k constructs a nodeset of its travel;
If (not possible to generate) cont=F;
{ nodeset}←constructed nodeset;

Until ((!cont) or (k > θ))
Define frequent nodesets;
If (cont) Prune the covered cases from dataset;

While (cont)
End

The nodei chosen to be added to the current
partial nodeset is the node with the highest value of
equation (1) subject to two restrictions. The first
restriction is that the nodei cannot occur yet in the
current partial nodeset. Note that to satisfy this
restriction the ants must “remember” which nodes
(attribute-value pairs) are contained in the current
partial nodeset. The second restriction is that a
nodeij cannot be added to the current partial nodeset
if this makes the extended partial nodeset cover less
than a predefined minimum support, called the
Min_sup threshold.

2.3 Case Pruning
Pruning is a commonplace technique. The main
goal of case pruning is to remove (reduce) the cases
covered by just constructed nodesets that might
have been unduly included in the dataset.

Case pruning potentially increases the predictive
power of the node, helping to avoid the scanning the
whole dataset. Another motivation for case pruning
is that it improves the cost of the system, since a
reduce dataset is in general more easily assessable
by the ant than the whole dataset.

The case pruning procedure is performed for each
ant as soon as the ant completes the construction of
its noteset. The basic idea is to remove the cases

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp423-428)

covered by the just constructed nodeset. That is all
the cases in the dataset need to be pruned when all
nodes in those each case is subset or identically
equal to the node in the union of the discovered
nodesets.

2.4 Pheromone Updating
Recall that each nodeij corresponds to a position in
some path that can be followed by an ant. At each
node, local information (i.e. pheromone amount)
maintains on the node itself and/or its outgoing
transition. This local information is initialized with
the same amount of pheromone. In other words,
when the system is initialized and the first ant starts
its travel all paths have the same amount of
pheromone. The initial amount of pheromone
deposited at each path position is inversely
proportional to the number of nodes (i.e. the number
of values of all attributes), as given by equation (2).

∑
=

==τ a

1k
k

ij

b

1)0t((2)

where τ ij(t) = pheromone deposited on the
transition of node i to j at time t;

 a = the total number of attributes; and
bk = the number of values in the domain of

attribute k.
The value returned by this equation is already

normalized, which facilitates its use in a single
equation.

Each time an ant completes the construction of a
nodeset (i.e. an ant completes its path) the amount
of pheromone in all positions of all paths must be
updated. This pheromone updating has two basic
ideas, as followed.

The amount of pheromone associated with each
transitionij occurring in the constructed nodeset is
increased by a constant amount ∆ of pheromone.
This pheromone updating equation (3) is

τ

τ∆+τ=τ)t()t(ijij (3)

The amount of pheromone associated with each
transitionij that does not occur in the constructed
nodeset is decreased, corresponding to the
phenomenon of pheromone evaporation in real Ant
Colony Systems. The decrease pheromone amount
of an unused node is considered by the comparison
of pheromone amount of used and unused nodes, in
this paper.

2.5 System Parameters
Our System has the following two user-defined
parameters:
• Number of Ants (No_of_ants): This is the

maximum number of complete nodesets
constructed during a single iteration of the system,
since each ant constructs a single nodeset (see
Figure 1). Note that the larger the No_of_ants, the
more nodesets are evaluated per iteration, but the
slower the system is;

• Minimum support percentage (Min_sup): Each
note must cover at least Min_sup, to enforce at
least a certain degree of generality in the
discovered nodesets. Min-sup-count can be
calculated from this parameter Min-sup and the
original dataset.

The behavior of individual ants to produce a desired
response in the colony behavior is done with the use
of above system parameters. By optimizing these
parameters, the optimal solution can be reached. In
this paper, we have made no serious attempt to
optimize these parameter values. Such an
optimization will be tried in future research. From
our experimental result, it is interesting to notice
that even the above non-optimized parameters’
setting has produced quite good results.

There is one caveat in the interpretation of the
value of No_of_ants which defines the maximum
number of ants per iteration of the system. The
reason why in practice much fewer ants are
necessary to complete an iteration of the system is
that iteration is considered to be finished when all
possible nodesets are equal to one of the discovered
nodesets.

3 Experiments
Using the well-known T40I10D100K and
T10I4D100K datasets and the mushroom dataset
(570kB, with 8124 transactions), we try to test the
ability of our proposed system. Here we present the
experimental results of proposed algorithm and
Apriori. Tests were run on a PC with 594 MHz
Pentium processor and 448MB RAM. The operating
system was WindowsXP. The following 2 figures
present the test results of the proposed algorithm
and Apriori on the 3 databases. Each test was
carried out 3 times; the figures shows the averages
of the results.

In figure 2, we compare the execution time of

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp423-428)

both algorithms over various supports for three
different databases. This figure indicates that the
proposed system constantly performs well as
Apriori for various supports. Figure 3 shows the
total number of the frequent nodesets found for
three databases with various support values.
Depending on the support value used, the total
number of the frequent nodesets found in proposed
algorithm is smaller than that of Apriori.

In all the experiments reported in this paper, the
parameter No_of_ants were set as 10000 for all
databases. But the actual number of ants per

iteration was less than this and thus all the
experiments were required one iteration only. This
means that all the results in this paper were totally
required two scans of databases: one for pheromone
deposition and other for production of frequent
nodesets. We have made no serious attempt to
optimize this parameter values. Although, this non-
optimized parameter setting has produced well
results. Such an optimization will be tried in future
research.

Mushroom Database

1

10

100

1000

50 40 30 20
support (%)

ru
nn

in
g

ti
m

e
(s

)

Apriori

0ur

Mushroom Database

1

10

100

1000

10000

100000

50 40 30 20
support (%)

re

qu
en

t
no

de
se

ts

Aprio ri

Our

T 10I4D100K Dat abase

1

10

100

1000

2 1.75 1.5 1.25 1 0 .75 0 .5 0.25
support (%)

ru
nn

in
g

ti
m

e
(s

)

Apriori

Our

T 10I4D100K Database

1

10

100

1000

10000

2 1.75 1.5 1.25 1 0.75 0.5 0.25
support (%)

fr

eq
ue

nt
 n

od
es

et
s

Apriori
Our

T 40I10D100K Database

1

10

100

1000

2 1.75 1.5 1.25
support (%)

ru
nn

in
g

ti
m

e
(s

)

Aprio ri

Our

T 40I10D100K Database

1

10

100

1000

10000

100000

2 1.75 1 .5 1.25support (%)

fr

eq
ue

nt
 n

od
es

et
s

Apriori
Our

Fig.2 Proposed System versus Apriori

Fig.3 Set Cardinality

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp423-428)

From our results, the proposed algorithm
intuitively produces simpler set of nodeset, which is
covered the nodesets generated by Apriori.
Moreover, it only need to be scan the reduced size
of dataset, i.e. may be more efficient to find frequent
nodesets, but more detail analysis will be needed.

4 Conclusion and Future Work
This work has proposed a framework of an
algorithm for nodeset discovery. The goal is to
extract frequent nodeset from data. The algorithm
framework is based on recent research on the
behavior of real ant colonies as well as in some data
mining concepts.

We have to compare the performance of our
algorithm with the performance of the well-known
original Apriori algorithm.

One research direction consists of generating
association from the result of proposed system; this
is our ongoing primary research.

Other research direction consists of performing
several experiments to investigate the sensitivity of
our algorithm to its user-defined parameters. In
addition, it would be interesting to investigate the
performance of other kinds of pheromone updating
strategy.

References:
[1] E. Bonabeau, M. Dorigo, and G. Theraulaz,

Swarm Intelligence: From Natural to Artificial
Systems. New York: Oxford University Press,
1999.

[2] O. Cordón, J. Casillas, and F. Herrera,
“Learning Fuzzy Rules Using Ant Colony

Optimization,” in Proc. ANTS’2000 – From
Ant Colonies to Artificial Ants: Second
International Workshop on Ant Algorithms,
2000, pp. 13-21.

[3] M. Dorigo, A. Colorni, and V. Maniezzo, “The
Ant System: Optimization by a colony of
cooperating agents,” IEEE Trans. Systems,
Man, and Cybernetics-Part B, vol. 26, no. 1, pp.
1-13, 1996.

[4] M. Dorigo, and G. D. Caro, “Ant Algorithms
for Discrete Optimization,” Artificial Life, vol.
5, no. 3, pp. 137-172, 1999.

[5] U. M. Fayyad, G. Piatetsky-Shapiro, and P.
Smyth, From data mining to knowledge
discovery: an overview. In: Fayyad, U.M.,
Piatetsky-Shapiro, G., Smyth, P. &
Uthurusamy, R. (Eds.) Advances in Knowledge
Discovery & Data Mining, 1-34. Cambridge:
AAAI/ MIT, 1996.

[6] B. Liu, H. A. Abbass, and B. Mckay,
“Classification rule Discovery with Ant Colony
Optimization,” Prec IEEE/WIC Int Conf on
Intelligent Agent Technology, IAT-2003, vol.
18, pp. 83-88, Oct 2003.

[7] N. Monmarche, “On data clustering with
artificial ants,” In: A. A. Freitas, Ed., AAAI-99
& GECCO-99 Workshop on Data Mining with
Evolutionary Algorithms: Research Directions,
Florida,1999, pp. 23-26, 1999.

[8] R. Sarker, H. Abbass, and C. Newton,
“Introducing data mining and knowledge
discovery,” In R. sarker & H. Abbass & C.
Newton (Eds.), Heuristics and Optimisation for
Knowledge Discovery, pp. 1-23: Idea Group
Publishing, 2002.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp423-428)

