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Abstract: - We present a framework of Swarm Technique application algorithm for frequent nodesets. This 
framework is based on recent research on the behaviour of real ant colonies, a field of Swarm Intelligent. The 
aim of proposed framework algorithm is to extract frequent nodesets for association rules discovery from data.  
The proposed algorithm is discussed from the frequent itemsets finding point of view in association rule 
discovery. A procedure for generating strong association rule from frequent itemsets is our ongoing research 
and will be presented in our near future paper. At present, a fundamental part of our ongoing research is 
presented in this paper. We compare the performance of proposed algorithm with the performance of the well-
known original Apriori algorithm. The accuracy of proposed algorithm is competitive with that of Apriori. 
Moreover, our system has found considerably simpler nodesets. 
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1 Introduction 
Swarm intelligence is a field which studies “the 
emergent collective intelligence of groups of simple 
agents” [1]. In groups of insects, which live in 
colonies, such as ants and bees, an individual can 
only do simple tasks on its own, while the colony's 
cooperative work is the main reason determining the 
intelligent behavior it shows. Ant Colony 
Optimization (ACO) [4] is a branch of a newly 
developed form of artificial intelligence called 
swarm intelligence.  

Knowledge discovery in databases (KDD) is the 
process of extracting models and patterns from large 
databases. The term data mining (DM) is often used 
as a synonym for the KDD process, although strictly 
speaking it is just a step within KDD. DM refers to 
the process of applying the discovery algorithm to 
the data. In [8], KDD is defined as “… the process 
of model abstraction from large databases and 
searching for valid, novel, and nontrivial patterns 
and symptoms within the abstracted model". 

There has been a great interest in the area of data 
mining, in which the general goal is to discover 
knowledge that is not only correct, but also 
comprehensible and interesting for the user [5]. In 
DM, discovered knowledge is often represented in 
the form of X ⇒ Y association rules. The rule 
contains a logical combination of predictor 
attributes, in the form: term1 AND term2 AND ... . 
Each term is a triple <attribute, operator, value>, 
such as <Gender = female>. 

Rule Discovery is an important DM task since it 
generates a set of symbolic rules that describe in a 
natural way. The human mind is able to understand 
rules better than any other data mining model. 
Hence, the user can understand the results produced 
by the system and combine them with their own 
knowledge to make a well-informed decision, rather 
than blindly trusting on a system producing 
incomprehensible results. However, these rules need 
to be simple and comprehensive. 

Association rule mining is a two-step process: 1) 
Find all frequent itemsets, and 2) Generate strong 
association rules from the frequent itemsets. 

To the best of our knowledge the use of Ant 
Colony Optimization [3] as a method for finding 
frequent itemsets in association rules discovery, in 
the context of data mining, is a research area still 
unexplored by other researchers.  

Actually, the Ant Colony algorithm developed for 
data mining that we are aware of is an algorithm for 
clustering [7], which is, of course, a data mining 
task very different from the task addressed in this 
paper. Also, Cordón et al. [2] have proposed another 
kind of Ant Colony Optimization application that 
learns fuzzy control rules, but it is outside the scope 
of data mining. Next, Ant-Miner is Ant Colony 
algorithm for classification rule discovery [6] which 
is also a data mining task very different from the 
association rule discovery task. 

We believe the development of Ant Colony 
algorithms for data mining is a promising research 
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area, due to the following rationale. An Ant Colony 
system involves simple agents (ants) that cooperate 
with one another to achieve an emergent, unified 
behavior for the system as a whole, producing a 
robust system capable of finding high-quality 
solutions for problems with a large search space. In 
the context of rule discovery, an Ant Colony system 
has the ability to perform a flexible, robust search 
for a good combination of logical conditions. 

This paper is organized as follows. The second 
section introduces the framework of Ant Colony 
system for discovering frequent nodesets (itemsets) 
proposed in this work. The third section describes 
the experimental results evaluating the performance 
of the proposed system and the generating of 
nodesets. Finally, the fourth section concludes on 
this work and discusses further directions for future 
research. 
 
 
2  Ant Colony System for Discovery of 

NodeSet 
In this section we discuss in detail our proposed 
framework system for discovery of nodeset. This 
section is divided into 5 parts, namely: an overview 
of our proposed system framework, nodeset 
construction, case pruning, pheromone updating, 
and system parameters. 
 
 
2.1 An Overview of Proposed System     

Framework 
Recall that each ant can be regarded as an agent that 
incrementally constructs/ modifies a solution for the 
target problem. In our case the target problem is the 
discovery of frequent nodeset. The proposed system 
is discussed from the frequent itemsets finding point 
of view in association rule discovery. Thus, in the 
rest of the paper, terms in the association rule and 
(frequent) itemset are referred to nodes and 
(frequent) nodeset, respectively. 

We assume that all the transaction of dataset D be 
the existing path (i.e. already constructed nodesets) 
of traveling spaces S traveled by ants. So to 
determine the deposited amount of pheromone, let a 
colony of ants be traveled over S. After that 
pheromone deposited amount on each node of each 
trial is updated and iteration is started again. Thus 
after the ant traveled the whole paths in S, we can 
start to find the desired frequent nodesets by using 
the clue of the previous ants.   

Each ant starts with an empty nodeset and adds 
one node (one term) at a time to its current partial 
nodeset. The current partial nodeset constructed by 
an ant corresponds to the current partial path 
followed by the ant. Similarly, the choice of a node 
to be added to the current partial nodeset 
corresponds to the choice of the direction to which 
the current path will be extended, among all the 
possible directions (all nodes that could be added to 
the current partial nodeset). The choice of the node 
to be added to the current partial nodeset depends on 
the amount of pheromone associated with each 
node, as will be discussed in detail in the later 
subsections. An ant keeps adding nodes one-at-a-
time to its current partial noteset until the ant is 
unable to continue. This situation can arise in two 
cases, which are discussed in next section. When 
one of these two stopping criteria is satisfied, the ant 
has built a frequent nodeset (i.e. it has completed its 
path), and in principle we could use the discovered 
nodeset for generating the association rule. 

This process is repeated for at most a predefined 
number of ants, as a parameter of the system, called 
No_of_ants. However, this iterative process can be 
interrupted earlier, when the constructed nodeset is 
equal to one of the discovered nodesets. 

From above nodesets generated by ants, we have 
to determine that these generated nodesets are 
frequent or not. To do this, we use the original 
dataset again. After that the frequent nodesets can be 
defined. 

Then all cases correctly covered by the just 
discovered nodeset are removed from the dataset. 
Hence, the proposed system is called again to find 
additional possible nodesets, if necessary, in the 
reduced dataset. So another additional ants start to 
construct other possible nodesets, using the new 
reduced dataset.  

Note that the non-existing nodes in the dataset 
after pruning (removing) some cases should be 
deleted as it is not necessary to travel to non-
existing nodes. By doing so, ants have to choose 
only existing nodes in the dataset and it make the 
system more efficient. 

This process is repeated for as much iteration as 
necessary to find nodesets covering almost all cases 
of the dataset. More precisely, the above process is 
repeated until the constructed nodeset is equal to 
one of the discovered nodesets. A summarized 
description of the above-discussed iterative process 
is shown in the proposed system framework of 
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Figure 1. 
When constructed nodeset equals to one of the 

discovered nodesets, the searching process stops. At 
this point the system has discovered several 
nodesets. The discovered nodesets are stored in an 
ordered rule list (in order of discovery). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.1 Overview of proposed system framework 
 

2.2   Nodeset Construction 
Let nodei be the current node in current partial 
nodeset traveled by ant. The probability that nodej is 
chosen by ant-k to be added to the current partial 
nodeset is given by equation (1). 

⎩
⎨
⎧ ∈τ

=
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where τ ij(t) is the amount of pheromone currently 
available at time t in the transition i, j of the trail 

being followed by the ant, and Ni is the set of one-
step neighbors of nodei. 

The amount of pheromone τ ij(t) is independent 
of the nodes which already occur in the current 
partial nodeset, but is entirely dependent on the 
paths followed by previous ants. Hence, τ ij(t) 
incorporates an indirect form of communication 
between ants, where successful ants leave a “clue” 
(pheromone) suggesting the best path to be followed 
by other ants. When the first ant starts to build its 
nodeset, all trail transitions i, j have the same 
amount of pheromone. However, as soon as an ant 
finishes its path the amounts of pheromone in each 
position i,j visited by the ant is updated, as will be 
explained in detail in a separate subsection later. 
Here we just mention the basic idea: the better the 
quality of the nodeset constructed by the ant, the 
higher the amount of pheromone added to the trail 
positions visited by the ant. Hence, with time the 
“best” trail positions to be followed – i.e. the best 
nodes (attribute-value pairs) to be added to a 
nodeset – will have greater and greater amounts of 
pheromone, increasing their probability of being 
chosen. 

Begin 
dataset ← all data; 
ε ← min-pheromone; 
θ  ← #ants; 
Do 
  k=0; 
  Repeat 

k = k+1; 
Ant-k travels existing predefined nodesets; 
Update pheromone amount of trial followed by 
Ant-k; 

Until( (end of existing predefined paths)or(k > θ)) 
While ( ! end of existing predefined paths) 
Define one-step-neighbours for each node; 
Do 
  k=0;cont=T; 
  Repeat 

k = k+1; 
Ant-k constructs a nodeset of its travel; 
If (not possible to generate ) cont=F; 
{ nodeset}←constructed nodeset; 

Until (( !cont ) or ( k > θ )) 
Define frequent nodesets; 
If (cont) Prune the covered cases from dataset; 

While (cont) 
End 

The nodei chosen to be added to the current 
partial nodeset is the node with the highest value of 
equation (1) subject to two restrictions. The first 
restriction is that the nodei cannot occur yet in the 
current partial nodeset. Note that to satisfy this 
restriction the ants must “remember” which nodes 
(attribute-value pairs) are contained in the current 
partial nodeset. The second restriction is that a 
nodeij cannot be added to the current partial nodeset 
if this makes the extended partial nodeset cover less 
than a predefined minimum support, called the 
Min_sup threshold. 

 
2.3   Case Pruning 
Pruning is a commonplace technique. The main 
goal of case pruning is to remove (reduce) the cases 
covered by just constructed nodesets that might 
have been unduly included in the dataset. 

Case pruning potentially increases the predictive 
power of the node, helping to avoid the scanning the 
whole dataset. Another motivation for case pruning 
is that it improves the cost of the system, since a 
reduce dataset is in general more easily assessable 
by the ant than the whole dataset. 

The case pruning procedure is performed for each 
ant as soon as the ant completes the construction of 
its noteset. The basic idea is to remove the cases 
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covered by the just constructed nodeset. That is all 
the cases in the dataset need to be pruned when all 
nodes in those each case is subset or identically 
equal to the node in the union of the discovered 
nodesets. 

 
2.4   Pheromone Updating 
Recall that each nodeij corresponds to a position in 
some path that can be followed by an ant. At each 
node, local information (i.e. pheromone amount) 
maintains on the node itself and/or its outgoing 
transition. This local information is initialized with 
the same amount of pheromone. In other words, 
when the system is initialized and the first ant starts 
its travel all paths have the same amount of 
pheromone. The initial amount of pheromone 
deposited at each path position is inversely 
proportional to the number of nodes (i.e. the number 
of values of all attributes), as given by equation (2). 

∑
=

==τ a

1k
k

ij

b

1)0t(  (2) 

where τ ij(t) = pheromone deposited on the 
transition of node i to j at time t; 

 a  = the total number of attributes; and 
bk = the number of values in the domain of 

attribute k. 
The value returned by this equation is already 

normalized, which facilitates its use in a single 
equation. 

Each time an ant completes the construction of a 
nodeset (i.e. an ant completes its path) the amount 
of pheromone in all positions of all paths must be 
updated. This pheromone updating has two basic 
ideas, as followed. 

The amount of pheromone associated with each 
transitionij occurring in the constructed nodeset is 
increased by a constant amount ∆  of pheromone. 
This pheromone updating equation (3) is 

τ

τ∆+τ=τ )t()t( ijij  (3) 

The amount of pheromone associated with each 
transitionij that does not occur in the constructed 
nodeset is decreased, corresponding to the 
phenomenon of pheromone evaporation in real Ant 
Colony Systems. The decrease pheromone amount 
of an unused node is considered by the comparison 
of pheromone amount of used and unused nodes, in 
this paper. 

2.5   System Parameters 
Our System has the following two user-defined 
parameters: 
•  Number of Ants (No_of_ants): This is the 

maximum number of complete nodesets 
constructed during a single iteration of the system, 
since each ant constructs a single nodeset (see 
Figure 1). Note that the larger the No_of_ants, the 
more nodesets are evaluated per iteration, but the 
slower the system is; 

•  Minimum support percentage (Min_sup): Each 
note must cover at least Min_sup, to enforce at 
least a certain degree of generality in the 
discovered nodesets. Min-sup-count can be 
calculated from this parameter Min-sup and the 
original dataset. 

The behavior of individual ants to produce a desired 
response in the colony behavior is done with the use 
of above system parameters. By optimizing these 
parameters, the optimal solution can be reached. In 
this paper, we have made no serious attempt to 
optimize these parameter values. Such an 
optimization will be tried in future research. From 
our experimental result, it is interesting to notice 
that even the above non-optimized parameters’ 
setting has produced quite good results. 

There is one caveat in the interpretation of the 
value of No_of_ants which defines the maximum 
number of ants per iteration of the system. The 
reason why in practice much fewer ants are 
necessary to complete an iteration of the system is 
that iteration is considered to be finished when all 
possible nodesets are equal to one of the discovered 
nodesets. 

 
 

3   Experiments 
Using the well-known T40I10D100K and 
T10I4D100K datasets and the mushroom dataset 
(570kB, with 8124 transactions), we try to test the 
ability of our proposed system. Here we present the 
experimental results of proposed algorithm and 
Apriori. Tests were run on a PC with 594 MHz 
Pentium processor and 448MB RAM. The operating 
system was WindowsXP. The following 2 figures 
present the test results of the proposed algorithm 
and Apriori on the 3 databases. Each test was 
carried out 3 times; the figures shows the averages 
of the results. 

In figure 2, we compare the execution time of 
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both algorithms over various supports for three 
different databases. This figure indicates that the 
proposed system constantly performs well as 
Apriori for various supports. Figure 3 shows the 
total number of the frequent nodesets found for 
three databases with various support values. 
Depending on the support value used, the total 
number of the frequent nodesets found in proposed 
algorithm is smaller than that of Apriori.  

In all the experiments reported in this paper, the 
parameter No_of_ants were set as 10000 for all 
databases. But the actual number of ants per 

iteration was less than this and thus all the 
experiments were required one iteration only. This 
means that all the results in this paper were totally 
required two scans of databases: one for pheromone 
deposition and other for production of frequent 
nodesets. We have made no serious attempt to 
optimize this parameter values. Although, this non-
optimized parameter setting has produced well 
results. Such an optimization will be tried in future 
research. 
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Fig.2 Proposed System versus Apriori 

 
Fig.3 Set Cardinality 
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From our results, the proposed algorithm 
intuitively produces simpler set of nodeset, which is 
covered the nodesets generated by Apriori. 
Moreover, it only need to be scan the reduced size 
of dataset, i.e. may be more efficient to find frequent 
nodesets, but more detail analysis will be needed. 

 

4   Conclusion and Future Work 
This work has proposed a framework of an 
algorithm for nodeset discovery. The goal is to 
extract frequent nodeset from data. The algorithm 
framework is based on recent research on the 
behavior of real ant colonies as well as in some data 
mining concepts. 

We have to compare the performance of our 
algorithm with the performance of the well-known 
original Apriori algorithm. 

One research direction consists of generating 
association from the result of proposed system; this 
is our ongoing primary research. 

Other research direction consists of performing 
several experiments to investigate the sensitivity of 
our algorithm to its user-defined parameters. In 
addition, it would be interesting to investigate the 
performance of other kinds of pheromone updating 
strategy. 
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