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Abstract: - When I started my career, in 1986, my main research interests were Artificial Intelligence(AI), Expert 
Systems and Decision Support Systems based on AI tools. The first experiment that I have done was the development of 
the Anti-Mind and Master Mind with Feedback programs written in the Basic language [1]. The Anti-Mind program 
simulates a good player of the Master Mind game, discovering the secret code defined by the human operator (a 
sequence of numbers in a pre-defined interval) very quickly. Then I used the algorithm of Anti-Mind to help and correct 
a human operator trying to discover the secret code defined by the computer resulting in the Master Mind with 
Feedback. 
 
Let’s take an example to clarify what I mean by the ‘Computer Thinks better than the human’ and seems to  have a 
higher IQ: 
 
Anti-Mind Program 
CPC=Number of Correct Digits in Correct Position 
CPE=Number of Correct Digits in Incorrect Position 
3 Digits 
Interval [0,3] 
 
1. 103  CPC,CPE=1,1 
2. 132  CPC,CPE=1,1 
3. 120  CPC,CPE=0,2 
**Enough Information!** 
Secret code=? 
 
The computer knows that the information is enough and it also knows the secret code. And you? 
 
In this paper I will present the algorithms of Anti-Mind and Mastermind with Feedback with some worked examples and 
I will discuss, at the light of Cognitive Science, why is the computer a better player than the best human Mastermind 
players. Finally I will try to simulate a human player and his cognitive limitations introducing noise in the good move 
chosen randomly from the good moves. In the near future I am planning to introduce logical processing limitations 
simulated by discarding some previous moves and/or limiting the number of previous moves considered in the 
generation of the good moves coherent with them from which will be selected and altered the final move. 
 
Key-Words: - AI, Cognitive Science, Simulation of Human Behaviour, Anti-Mind Algorithm, Simulating Human 
Cognitive Limitations Introducing Noise in Anti-Mind. 
 

1 Introduction 
During the last summer holidays I spent some time trying 
to put some order in my old books and I found my ’89 
CV  [1] and when I read it I found the detailed 
description of Anti-Mind and Master Mind with 
Feedback programs. What I found interesting were some 
examples of the runs of that programs where the 
computer knows that the information was enough and 

knows the secret code but I had difficulties to reach the 
same conclusions. 
Then I found another old book [2] which contains the 
Basic code of the Anti-Mind for the  Sinclair 16k RAM 
ZX81 for secret codes with four digits varying between 1 
and 6…Yes! They have done it without saving in 
memory the possible good moves coherent with the 
existent information, which makes the program very 
slow (they generate all the combinations till they find 
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one that is coherent with the actual information) and very 
difficult to understand. It is in this sense that my Anti-
Mind program written in Basic in an Apple II with 48k 
of RAM memory is an original work: I didn’t understand 
the Charlton et al’s algorithm behind a so tricky and 
‘spaghettian’ code and I invented the Anti-Mind 
algorithm. 
There is an established idea that the Brain is a very 
powerful logic processor. I will show the contrary: the 
Brain is a very weak logic processor, and we have a great 
difficulty to combine (equivalent to logical conjunction 
AND) various incomplete informations like in the 
Mastermind game. The problem is that, if we don’t repeat 
the digits in the first moves, the logical expressions that 
represent the possible hypotheses coherent with each 
move are more complex and much more their 
conjunction. For example, if the first move is 
 
1333 cpc=1 cpe=0, the logical expression of the possible 
hypotheses coherent with this information is 
(1,1)&(3,de) ⊕ (1,de) & [ (3,2)⊕(3,3)⊕(3,4) ] & (3 
doesn’t exist in position 1) 
where ⊕ represents the exclusive or (XOR) logical 
operation and (i,j) means digit i exists in position j and 
(i,de) means digit i doesn’t exist. 

 
But if the first move is 
0254 cpc=1 cpe=2, the logical expression of the possible 
hypotheses coherent with this information is much more 
complex (assuming a maximum digit of 6): 

 
(0,1)&   { (2,3)&(5,2)&(4,de)&[(3,4) ⊕(1,4) ⊕(2,4) 
⊕(5,4) ⊕(6,4)] ⊕(2,3)&(5,4)&(4,de) &[(3,2) ⊕(1,2) 
⊕(5,4) ⊕(6,4)] ⊕ (2,4)&(5,2)&(4,de)&[(3,3) ⊕(1,3) 
⊕(5,3) ⊕(6,3)]  ⊕ (2,3)&(4,2)&(5,de)&[(1,4) ⊕(3,4) 
⊕(4,4) ⊕(6,4)] ⊕ (2,4)&(4,2)&(5,de)&[(1,3) ⊕(2,3) 
⊕(4,3) ⊕(6,3)] ⊕(2,4)&(4,3)&(5,de)&[(1,2) ⊕(2,2) 
⊕(3,2) ⊕(4,2) ⊕(6,2)] ⊕(5,2)&(4,3)&(2,de)&[(1,4) 
⊕(3,4) ⊕(4,4) ⊕(5,4) ⊕(6,4)] 
⊕(5,4)&(4,2)&(2,de)&[(1,3) ⊕(3,3) ⊕(4,3) ⊕(5,3) 
⊕(6,3)] ⊕(5,4)&(4,3)&(2,de)&[(1,2) ⊕ (3,2) ⊕ (4,2) 
⊕(5,2) ⊕(6,2) }  ⊕ 
 
(2,2)& {…} ⊕  
 
(5,3)& {…} ⊕  
 
(4,4)& {…} 

 
note that A⊕B=A&not(B) + not(A)&B 

 
where + means logical OR. 
 

Now imagine the conjunction of various expressions like 
this…only a very powerful logic processor would be 
capable to make the conjunction (logical AND) of various 
expressions so complex without getting lost…as it happens 
with us when we try to understand how the anti-mind 
algorithm reaches the conclusion that the information is 
enough and finds the secret code. 
I have rewritten the anti-mind and master mind with 
feedback in matlab with some minor modifications in the 
algorithm and some more profound modifications in the 
implementation. 
Since the mathematical analysis of the worst-case 
performance of the anti-mind algorithm in terms of the 
maximum number of moves for each combination of 
number of digits and maximum digit (assuming that the 
digit varies between 0 and digit_max) is very complex due 
to the random nature of my anti-mind, I have also made 
two programs anti_mind_auto.m and anti_mind_auto2.m 
that put the computer playing against itself for each 
possible secret code, selecting the more unfavourable 
situations of enough information. 
I made some simulations with these latter programs but the 
results are not reliable since I used a number of repetitions 
with each secret code relatively small compared to the great 
number of possible combinations of good moves. For 
example [2] guaranteed that their anti-mind algorithm finds 
the secret code of 4 digits between 1 and 6 in no more than 
9 moves, and my simulation points at a better worst case 
performance of 7 moves…but that doesn’t mean that my 
algorithm is better, only that I didn’t have access to a super 
computer! 
 
2 JBF’s Anti-Mind Algorithm 
There are three main ideas behind my very simple anti-mind 
algorithm. The first one is to translate each move and its cpc 
and cpe not in a complex logical expression but in a set of 
good moves, that is, coherent with this information. The 
second one is that to select the subset from the actual good 
moves can be done simply considering the last move as the 
secret code and comparing it with the other good moves: the 
selected good moves must have cpc_i=cpc and cpe_i=cpe; 
this later condition guarantees that the selected good moves 
have cpc digits coincident with the last move and cpe digits 
that exist in the last move in different positions, that is, are 
coherent with the new information. The third one is that 
applying successively this rule of selection is equivalent to 
the conjunction (logical AND) of the logical expressions 
that define the good moves associated with each trial. 
Before enunciating the algorithm in formal terms let’s see 
an example, in order to acquire the intuition of what is 
going on. 
My anti_mind.m has the syntax 
anti_mind(n_digits,max_digit, flag_trace, flag_n_h) 
When we make flag_trace=1, the algorithm asks after each 
move if we want to see all the actual good moves, and if we 
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make flag_n_h=1, the algorithm will display the number of 
actual good moves before each trial. So let’s consider 4 
digits varying between 0 and 5, the secret code being 0535: 
 
>> anti_mind(4,5, 1, 1) 
Number of Hypothesis=1296 
Move 1 
Move=4  2  0  4 
cpc=0 
cpe=1 
Number of Good Hypothesis=276 
>>trace?0 
Move 2 
Move=2  1  5  3 
cpc=0 
cpe=2 
Number of Good Hypothesis=52 
>>trace?0 
Move 3 
Move=3  3  4  5 
cpc=1 
cpe=1 
Number of Good Hypothesis=11 
>>trace? 
0  0  3  5 
0  3  3  1 
0  5  3  5 
1  3  3  0 
1  4  1  5 
1  5  4  1 
3  0  3  1 
3  4  1  1 
5  0  3  5 
5  4  1  5 
5  5  4  1 
Move 4 
Move=5  0  3  5 
cpc=2 
cpe=2 
Number of Good Hypothesis=1 
>>trace?0 
**ENOUGH INFORMATION**, Secret Code: 
0535 
 
If you compare the selected 11 good moves with move 3, 
you see that each good move has only one digit coincident 
with move 3, since cpc=1, and only one digit that exists in 
move 3 but in a different position, since cpe=1; the 
remaining two digits don’t contribute to cpc and cpe. I 
regrouped the referred 11 good moves  to make more clear 
how the algorithm translates the logic condition in a set of 
moves (de means does not exist): 
 
Move 3 
Move=3  3  4  5 cpc=1 cpe=1 

[considering (3,1)->cpc=1 &(3,3)->cpe=1 &(the 
remaining positions 2,4 occupied by 
0,1∉{3345})&(4,de)&(5,de)]: 
3  0  3  1 
[considering (3,1)->cpc=1 &(4,2)->cpe=1 &(the 
remaining positions 3,4 occupied by 
1∉{3345})&(5,de)]: 
3  4  1  1 
[considering (3,2)->cpc=1 &(3,3)->cpe=1 &(the 
remaining positions 1,4 occupied by 
0,1∉{3345})&(4,de)&(5,de)]: 
0  3  3  1 
[considering (3,2)->cpc=1 &(3,3)->cpe=1 &(the 
remaining positions 1,4 occupied by 
0,1∉{3345})&(5,de)]: 
1  3  3  0 
[considering (4,3)->cpc=1 &(5,2)->cpe=1 &(the 
remaining positions 1,4 occupied by 5 and 
1∉{3345}) & (3,de)]: 
5  5  4  1 
[considering (4,3)->cpc=1 &(5,2)->cpe=1 &(the 
remaining positions 1,4 occupied by 1∉{3345}) & 
(3,de)]: 
1  5  4  1 
[considering (5,4)->cpc=1 &(3,3)->cpe=1 &(the 
remaining positions 1,2 occupied by 0∉{3345}) & 
(4,de)]: 
0  0  3  5 
[considering (5,4)->cpc=1 &(3,3)->cpe=1 &(the 
remaining positions 1,2 occupied by 5 and 
0∉{3345})& (4,de)]: 
0  5  3  5 
[considering (5,4)->cpc=1 &(4,2)->cpe=1 &(the 
remaining positions 1,3 occupied by  
1∉{3345}&(3,de)]: 
1  4  1  5 
[considering (5,4)->cpc=1 & (3,3)->cpe=1 &(the 
remaining positions 1,2 occupied by  5 and 0 
∉{3345}) & (4,de)]: 
5  0  3  5 
[considering (5,4)->cpc=1 & (4,2)->cpe=1 &(the 
remaining positions 1,3 occupied by  5 and 1 
∉{3345}) & (3,de)]: 

5 4  1  5 
 
After this digression I think you are just guessing 
my Anti-Mind algorithm which I will present in 
pseudo-code: 
 
1. input(n_digits,max_digit) 

2. n_good_moves=(max_digit+1)n_digits 
3. move_order=1 
4. good_moves(1,1 to n_digits)=zeros(1,1 

to n_digits) 
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5. while n_good_moves > 1 
           if  move_order = 1 

                
move=round(random(‘uniform’,0,max_digit, 1 to 

n_digits)) 
           else 

                 move= 
         
good_moves(index(round(random(‘uniform’,1,n_
good_moves)),1 to n_digits) 
     display([‘Move ‘, move_order, ‘ ‘, move]) 
     input(cpc,cpe) 
     if cpc = n_digits 
        display(‘ I got it!’) 
        break 
     if move_order=1 
       [good_moves, 
index]=generate_good_moves(n_digits,max_digi
t,move,cpc,cpe) 
    else 
        [index,n_good_moves]= 
            
select_good_moves(n_good_moves,good_moves,
index,move,cpc,cpe) 
6. if n_good_moves=1 
display([‘**Enough Information**  
                 Secret Code=’, 
good_moves(index(1),1 to n_digits)])  
7. if n_good_moves=0 
display(‘**You Didn’t Respect the Rules!**’) 

 
 
3 So, So You Think You Think Better than 
Anti-Mind?! 
 
As another example of application of the Anti-Mind 
algorithm let’s see how it found the secret code and 
reached the conclusion that the given information was 
enough for the case presented in the abstract: 
 

1.103 CPC,CPE=1,1 
Good Hypothesis:  
131, 132, 133, 100, 110, 120,   
001, 101, 201, 300, 302, 303, 
023, 033, 213, 313 
2.132 CPC,CPE=1,1 
131 compared to 132->CPC,CPE=2,0; so 
131 cannot be the Secret Code! 
132 compared to 132->CPC,CPE=4,0; so 
132 cannot be the Secret Code! 

133 compared to 132->CPC,CPE=2,0; so 
133 cannot be the Secret Code! 
100 compared to 132->CPC,CPE=1,0; so 
100 cannot be the Secret Code! 

110 compared to 132->CPC,CPE=1,0; so 
110 cannot be the Secret Code! 

(etc) 
120 compared to 132->CPC,CPE=1,1; 
so 120 can be the Secret Code! 
(etc) 
302 compared to 132->CPC,CPE=1,1; 
so 302 can be the Secret Code! 
(etc) 
 
So, it only remains 2 Hypothesis: 120 
or 302 
 
3.120 CPC,CPE=0,2 

 
So it only remains 302 and this must be the Secret Code if 
the CodeMaker did not lie! 
The anti-mind algorithm can be seen as a simplification of 
Donald Knuth’s algorithm [4] where he chooses the good 
move not randomly from all good moves but the move that 
minimizes the maximum number of next good moves for all 
possible combinations of cpc,cpe. In the literature, after 
1976, appeared a lot of works to solve the mastermind 
game, but nobody did beat the worst case performance of 5 
moves of Donald Knuth’s algorithm [5]-[16], and most of 
these works did not refer Donald Knuth’s work! 
 
4 Mastermind with Feedback 
There are two ways to compare the human mastermind 
player performance with the anti-mind performance. The 
more obvious is to verify if the human player make good 
moves, that is, such that 
move∈{good_moves(index(1:n_good_moves),1:n_digits)
}. This is the main idea behind Mastermind with 
Feedback implemented by anti_mind_real.m that has the 
syntax anti_mind_real(n_digits, max_digit). The other 
way is to compare human’s and anti_mind’s worst case 
performances. In the following section I will present 
some simulations that, although not 100% reliable, give 
an idea of the very good worst case performance of my 
anti_mind algorithm..  
    Again, before presenting the formal description of 
Mastermind with Feedback algorithm let’s see some 
examples with 4 digits and maximum digit 5 and 
flag_bad_moves=1, which means that the computer only 
accepts good moves, and while the move is considered 
bad (don’t belong to {good_moves(i,j)}) the computer 
continues to ask for a good move: 
 

>> anti_mind_real(4,5,1) 
Number of Possible Good Moves=1296 
move 1='1530' 
cpc=1 
cpe=0 
Number of Possible Good Moves=108 
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move 2='1421' 
cpc=0 
cpe=2 
Number of Possible Good Moves=19 
move 3='2512' 
**Bad Move!** 
Do you want to see the good moves?1 
   
**Actual Good Moves** 
0  2  4  0 
2  0  4  0 
2  2  3  4 
2  2  4  0 
2  3  3  4 
2  5  4  2 
2  5  4  4 
2  5  4  5 
2  5  5  4 
3  2  3  4 
4  2  0  0 
4  2  3  2 
4  2  3  3 
4  2  3  4 
4  2  4  0 
4  3  3  2 
4  5  4  2 
4  5  5  2 
5  5  4  2 
move 4='2545' 
cpc=0 
cpe=2 
Number of Possible Good Moves=6 
move 5='2542' 
**Bad Move!** 
Do you want to see the good moves?1 
   
**Actual Good Moves** 
3  2  3  4 
4  2  0  0 
4  2  3  2 
4  2  3  3 
4  2  3  4 
4  3  3  2 
move 6='4233' 
cpc=3 
cpe=0 
Number of Possible Good Moves=2 
move 7='4234' 
cpc=4 
cpe=0 
**You Found It! in 7 moves, with 2 bad 
moves ** 
 

As you can see, my performance is not bad…for a 
human! 

A very good human master mind player would be 
someone that don’t make bad moves. 
After this digression I think you are just guessing my 
Master Mind with Feedback algorithm that I will present 
in pseudo-code: 
 
1. input(n_digits, maximum_digit) 
2. secret_code=generate_secret_code(n_digits,

maximum_digit) 
3. cpc=cpe=0 
4. while cpc < n_digits 
            flag_bad_moves=1 
            while flag_bad_moves 
                    move=input(‘your move’) 
                    
flag_bad_moves=search(move,good_moves) 
           cpc=calculate_cpc(move,secret_code) 
           cpe=calculate_cpe(move,secret_code) 
           
good_moves=select_good_moves(good_moves,secret_c
ode,move,cpc,cpe) 
 
 
5 Introducing Noise in the Chosen Good 

Move 
 
In this first approach we try to simulate a human playing 
mastermind introducing noise in certain digits and in some 
moves, i.e. altering the chosen good move for certain 
moves. The good move is always coherent with all the 
previous moves and cpc and cpe. 
Let’s see an example for secret code 0005, where we 
introduce noise in all 4 digits varying between 0..5 and 
only in moves 2, 4 and 6: 
 
1. 1223  CPC=0, CPE=0 
From this move we can infer that 1, 2 and 3 do not belong 
to the secret code, but in the second move: 
2.   5211 CPC=0, CPE=1 
In this move only the 5 makes sense! From this information 
we know that there is at least one 5 in the second and/or 
third and/or fourth positions of the secret code. 
3.   0445 CPC=2, CPE=0 
Once this time we did not introduce noise this is a good 
move, i.e. coherent with all the previous. Now we know 
that there exist a 5 in the last position and a 4 in the second 
or third positions or a 0 in the first position.  
The next move, where we will introduce noise, is totally 
nonsense since it is a permutation of the first move: 
4.  2312 CPC=0, CPE=0 
The next move, were we will not introduce noise, is 
obviously a good move: 
5. 0055 CPC=3, CPE=0 
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Now with this new information we know that exists a 0 
in the first or second position and two 5’s or exists one 
5 and two 0’s. 
So the good moves are only 0005! We do not need more 
information to get the secret code, but since in the next 
move we will introduce noise, we will not reach that 
conclusion: 
6. 5152 CPC=0, CPE=1 
Since in the next move we will not introduce noise, the 
algorithm will reach our conclusion: 
7. ENOUGH INFORMATION! SECRET CODE: 
0005 
 
 
6 Conclusions and Future Work 
Although a little bit simplistic, our approach is an 
original first step toward the modelling of a very 
complex cognitive task, an human playing the 
mastermind game. 
    In the near future we also plan to consider the 
limitations of working memory and logical thinking 
which could be modeled by a varying limit in the 
number of previous moves to be considered to generate 
the next good move that would next also be altered. 
   Another vector of possible evolution of our work 
could be the development of a complementary 
psychological test based on the Mastermind with 
Feedback algorithm from which we could calculate 
various scores characterizing the level of logical 
thinking errors. 
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