
Simulating a Human Playing Mastermind Introducing Noise in Anti-
Mind Algorithm

JOSÉ BARAHONA DA FONSECA

Department of Electrical Engineering and Computer Science
New University of Lisbon

Monte de Caparica, 2829-516 Caparica
PORTUGAL

 http://www.dee.fct.unl.pt

Abstract: - When I started my career, in 1986, my main research interests were Artificial Intelligence(AI), Expert
Systems and Decision Support Systems based on AI tools. The first experiment that I have done was the development of
the Anti-Mind and Master Mind with Feedback programs written in the Basic language [1]. The Anti-Mind program
simulates a good player of the Master Mind game, discovering the secret code defined by the human operator (a
sequence of numbers in a pre-defined interval) very quickly. Then I used the algorithm of Anti-Mind to help and correct
a human operator trying to discover the secret code defined by the computer resulting in the Master Mind with
Feedback.

Let’s take an example to clarify what I mean by the ‘Computer Thinks better than the human’ and seems to have a
higher IQ:

Anti-Mind Program
CPC=Number of Correct Digits in Correct Position
CPE=Number of Correct Digits in Incorrect Position
3 Digits
Interval [0,3]

1. 103 CPC,CPE=1,1
2. 132 CPC,CPE=1,1
3. 120 CPC,CPE=0,2
Enough Information!
Secret code=?

The computer knows that the information is enough and it also knows the secret code. And you?

In this paper I will present the algorithms of Anti-Mind and Mastermind with Feedback with some worked examples and
I will discuss, at the light of Cognitive Science, why is the computer a better player than the best human Mastermind
players. Finally I will try to simulate a human player and his cognitive limitations introducing noise in the good move
chosen randomly from the good moves. In the near future I am planning to introduce logical processing limitations
simulated by discarding some previous moves and/or limiting the number of previous moves considered in the
generation of the good moves coherent with them from which will be selected and altered the final move.

Key-Words: - AI, Cognitive Science, Simulation of Human Behaviour, Anti-Mind Algorithm, Simulating Human
Cognitive Limitations Introducing Noise in Anti-Mind.

1 Introduction
During the last summer holidays I spent some time trying
to put some order in my old books and I found my ’89
CV [1] and when I read it I found the detailed
description of Anti-Mind and Master Mind with
Feedback programs. What I found interesting were some
examples of the runs of that programs where the
computer knows that the information was enough and

knows the secret code but I had difficulties to reach the
same conclusions.
Then I found another old book [2] which contains the
Basic code of the Anti-Mind for the Sinclair 16k RAM
ZX81 for secret codes with four digits varying between 1
and 6…Yes! They have done it without saving in
memory the possible good moves coherent with the
existent information, which makes the program very
slow (they generate all the combinations till they find

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp225-230)

one that is coherent with the actual information) and very
difficult to understand. It is in this sense that my Anti-
Mind program written in Basic in an Apple II with 48k
of RAM memory is an original work: I didn’t understand
the Charlton et al’s algorithm behind a so tricky and
‘spaghettian’ code and I invented the Anti-Mind
algorithm.
There is an established idea that the Brain is a very
powerful logic processor. I will show the contrary: the
Brain is a very weak logic processor, and we have a great
difficulty to combine (equivalent to logical conjunction
AND) various incomplete informations like in the
Mastermind game. The problem is that, if we don’t repeat
the digits in the first moves, the logical expressions that
represent the possible hypotheses coherent with each
move are more complex and much more their
conjunction. For example, if the first move is

1333 cpc=1 cpe=0, the logical expression of the possible
hypotheses coherent with this information is
(1,1)&(3,de) ⊕ (1,de) & [(3,2)⊕(3,3)⊕(3,4)] & (3
doesn’t exist in position 1)
where ⊕ represents the exclusive or (XOR) logical
operation and (i,j) means digit i exists in position j and
(i,de) means digit i doesn’t exist.

But if the first move is
0254 cpc=1 cpe=2, the logical expression of the possible
hypotheses coherent with this information is much more
complex (assuming a maximum digit of 6):

(0,1)& { (2,3)&(5,2)&(4,de)&[(3,4) ⊕(1,4) ⊕(2,4)
⊕(5,4) ⊕(6,4)] ⊕(2,3)&(5,4)&(4,de) &[(3,2) ⊕(1,2)
⊕(5,4) ⊕(6,4)] ⊕ (2,4)&(5,2)&(4,de)&[(3,3) ⊕(1,3)
⊕(5,3) ⊕(6,3)] ⊕ (2,3)&(4,2)&(5,de)&[(1,4) ⊕(3,4)
⊕(4,4) ⊕(6,4)] ⊕ (2,4)&(4,2)&(5,de)&[(1,3) ⊕(2,3)
⊕(4,3) ⊕(6,3)] ⊕(2,4)&(4,3)&(5,de)&[(1,2) ⊕(2,2)
⊕(3,2) ⊕(4,2) ⊕(6,2)] ⊕(5,2)&(4,3)&(2,de)&[(1,4)
⊕(3,4) ⊕(4,4) ⊕(5,4) ⊕(6,4)]
⊕(5,4)&(4,2)&(2,de)&[(1,3) ⊕(3,3) ⊕(4,3) ⊕(5,3)
⊕(6,3)] ⊕(5,4)&(4,3)&(2,de)&[(1,2) ⊕ (3,2) ⊕ (4,2)
⊕(5,2) ⊕(6,2) } ⊕

(2,2)& {…} ⊕

(5,3)& {…} ⊕

(4,4)& {…}

note that A⊕B=A¬(B) + not(A)&B

where + means logical OR.

Now imagine the conjunction of various expressions like
this…only a very powerful logic processor would be
capable to make the conjunction (logical AND) of various
expressions so complex without getting lost…as it happens
with us when we try to understand how the anti-mind
algorithm reaches the conclusion that the information is
enough and finds the secret code.
I have rewritten the anti-mind and master mind with
feedback in matlab with some minor modifications in the
algorithm and some more profound modifications in the
implementation.
Since the mathematical analysis of the worst-case
performance of the anti-mind algorithm in terms of the
maximum number of moves for each combination of
number of digits and maximum digit (assuming that the
digit varies between 0 and digit_max) is very complex due
to the random nature of my anti-mind, I have also made
two programs anti_mind_auto.m and anti_mind_auto2.m
that put the computer playing against itself for each
possible secret code, selecting the more unfavourable
situations of enough information.
I made some simulations with these latter programs but the
results are not reliable since I used a number of repetitions
with each secret code relatively small compared to the great
number of possible combinations of good moves. For
example [2] guaranteed that their anti-mind algorithm finds
the secret code of 4 digits between 1 and 6 in no more than
9 moves, and my simulation points at a better worst case
performance of 7 moves…but that doesn’t mean that my
algorithm is better, only that I didn’t have access to a super
computer!

2 JBF’s Anti-Mind Algorithm
There are three main ideas behind my very simple anti-mind
algorithm. The first one is to translate each move and its cpc
and cpe not in a complex logical expression but in a set of
good moves, that is, coherent with this information. The
second one is that to select the subset from the actual good
moves can be done simply considering the last move as the
secret code and comparing it with the other good moves: the
selected good moves must have cpc_i=cpc and cpe_i=cpe;
this later condition guarantees that the selected good moves
have cpc digits coincident with the last move and cpe digits
that exist in the last move in different positions, that is, are
coherent with the new information. The third one is that
applying successively this rule of selection is equivalent to
the conjunction (logical AND) of the logical expressions
that define the good moves associated with each trial.
Before enunciating the algorithm in formal terms let’s see
an example, in order to acquire the intuition of what is
going on.
My anti_mind.m has the syntax
anti_mind(n_digits,max_digit, flag_trace, flag_n_h)
When we make flag_trace=1, the algorithm asks after each
move if we want to see all the actual good moves, and if we

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp225-230)

make flag_n_h=1, the algorithm will display the number of
actual good moves before each trial. So let’s consider 4
digits varying between 0 and 5, the secret code being 0535:

>> anti_mind(4,5, 1, 1)
Number of Hypothesis=1296
Move 1
Move=4 2 0 4
cpc=0
cpe=1
Number of Good Hypothesis=276
>>trace?0
Move 2
Move=2 1 5 3
cpc=0
cpe=2
Number of Good Hypothesis=52
>>trace?0
Move 3
Move=3 3 4 5
cpc=1
cpe=1
Number of Good Hypothesis=11
>>trace?
0 0 3 5
0 3 3 1
0 5 3 5
1 3 3 0
1 4 1 5
1 5 4 1
3 0 3 1
3 4 1 1
5 0 3 5
5 4 1 5
5 5 4 1
Move 4
Move=5 0 3 5
cpc=2
cpe=2
Number of Good Hypothesis=1
>>trace?0
ENOUGH INFORMATION, Secret Code:
0535

If you compare the selected 11 good moves with move 3,
you see that each good move has only one digit coincident
with move 3, since cpc=1, and only one digit that exists in
move 3 but in a different position, since cpe=1; the
remaining two digits don’t contribute to cpc and cpe. I
regrouped the referred 11 good moves to make more clear
how the algorithm translates the logic condition in a set of
moves (de means does not exist):

Move 3
Move=3 3 4 5 cpc=1 cpe=1

[considering (3,1)->cpc=1 &(3,3)->cpe=1 &(the
remaining positions 2,4 occupied by
0,1∉{3345})&(4,de)&(5,de)]:
3 0 3 1
[considering (3,1)->cpc=1 &(4,2)->cpe=1 &(the
remaining positions 3,4 occupied by
1∉{3345})&(5,de)]:
3 4 1 1
[considering (3,2)->cpc=1 &(3,3)->cpe=1 &(the
remaining positions 1,4 occupied by
0,1∉{3345})&(4,de)&(5,de)]:
0 3 3 1
[considering (3,2)->cpc=1 &(3,3)->cpe=1 &(the
remaining positions 1,4 occupied by
0,1∉{3345})&(5,de)]:
1 3 3 0
[considering (4,3)->cpc=1 &(5,2)->cpe=1 &(the
remaining positions 1,4 occupied by 5 and
1∉{3345}) & (3,de)]:
5 5 4 1
[considering (4,3)->cpc=1 &(5,2)->cpe=1 &(the
remaining positions 1,4 occupied by 1∉{3345}) &
(3,de)]:
1 5 4 1
[considering (5,4)->cpc=1 &(3,3)->cpe=1 &(the
remaining positions 1,2 occupied by 0∉{3345}) &
(4,de)]:
0 0 3 5
[considering (5,4)->cpc=1 &(3,3)->cpe=1 &(the
remaining positions 1,2 occupied by 5 and
0∉{3345})& (4,de)]:
0 5 3 5
[considering (5,4)->cpc=1 &(4,2)->cpe=1 &(the
remaining positions 1,3 occupied by
1∉{3345}&(3,de)]:
1 4 1 5
[considering (5,4)->cpc=1 & (3,3)->cpe=1 &(the
remaining positions 1,2 occupied by 5 and 0
∉{3345}) & (4,de)]:
5 0 3 5
[considering (5,4)->cpc=1 & (4,2)->cpe=1 &(the
remaining positions 1,3 occupied by 5 and 1
∉{3345}) & (3,de)]:

5 4 1 5

After this digression I think you are just guessing
my Anti-Mind algorithm which I will present in
pseudo-code:

1. input(n_digits,max_digit)

2. n_good_moves=(max_digit+1)n_digits
3. move_order=1
4. good_moves(1,1 to n_digits)=zeros(1,1

to n_digits)

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp225-230)

5. while n_good_moves > 1
 if move_order = 1

move=round(random(‘uniform’,0,max_digit, 1 to

n_digits))
 else

 move=

good_moves(index(round(random(‘uniform’,1,n_
good_moves)),1 to n_digits)
 display([‘Move ‘, move_order, ‘ ‘, move])
 input(cpc,cpe)
 if cpc = n_digits
 display(‘ I got it!’)
 break
 if move_order=1
 [good_moves,
index]=generate_good_moves(n_digits,max_digi
t,move,cpc,cpe)
 else
 [index,n_good_moves]=

select_good_moves(n_good_moves,good_moves,
index,move,cpc,cpe)
6. if n_good_moves=1
display([‘**Enough Information**
 Secret Code=’,
good_moves(index(1),1 to n_digits)])
7. if n_good_moves=0
display(‘**You Didn’t Respect the Rules!**’)

3 So, So You Think You Think Better than
Anti-Mind?!

As another example of application of the Anti-Mind
algorithm let’s see how it found the secret code and
reached the conclusion that the given information was
enough for the case presented in the abstract:

1.103 CPC,CPE=1,1
Good Hypothesis:
131, 132, 133, 100, 110, 120,
001, 101, 201, 300, 302, 303,
023, 033, 213, 313
2.132 CPC,CPE=1,1
131 compared to 132->CPC,CPE=2,0; so
131 cannot be the Secret Code!
132 compared to 132->CPC,CPE=4,0; so
132 cannot be the Secret Code!

133 compared to 132->CPC,CPE=2,0; so
133 cannot be the Secret Code!
100 compared to 132->CPC,CPE=1,0; so
100 cannot be the Secret Code!

110 compared to 132->CPC,CPE=1,0; so
110 cannot be the Secret Code!

(etc)
120 compared to 132->CPC,CPE=1,1;
so 120 can be the Secret Code!
(etc)
302 compared to 132->CPC,CPE=1,1;
so 302 can be the Secret Code!
(etc)

So, it only remains 2 Hypothesis: 120
or 302

3.120 CPC,CPE=0,2

So it only remains 302 and this must be the Secret Code if
the CodeMaker did not lie!
The anti-mind algorithm can be seen as a simplification of
Donald Knuth’s algorithm [4] where he chooses the good
move not randomly from all good moves but the move that
minimizes the maximum number of next good moves for all
possible combinations of cpc,cpe. In the literature, after
1976, appeared a lot of works to solve the mastermind
game, but nobody did beat the worst case performance of 5
moves of Donald Knuth’s algorithm [5]-[16], and most of
these works did not refer Donald Knuth’s work!

4 Mastermind with Feedback
There are two ways to compare the human mastermind
player performance with the anti-mind performance. The
more obvious is to verify if the human player make good
moves, that is, such that
move∈{good_moves(index(1:n_good_moves),1:n_digits)
}. This is the main idea behind Mastermind with
Feedback implemented by anti_mind_real.m that has the
syntax anti_mind_real(n_digits, max_digit). The other
way is to compare human’s and anti_mind’s worst case
performances. In the following section I will present
some simulations that, although not 100% reliable, give
an idea of the very good worst case performance of my
anti_mind algorithm..
 Again, before presenting the formal description of
Mastermind with Feedback algorithm let’s see some
examples with 4 digits and maximum digit 5 and
flag_bad_moves=1, which means that the computer only
accepts good moves, and while the move is considered
bad (don’t belong to {good_moves(i,j)}) the computer
continues to ask for a good move:

>> anti_mind_real(4,5,1)
Number of Possible Good Moves=1296
move 1='1530'
cpc=1
cpe=0
Number of Possible Good Moves=108

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp225-230)

move 2='1421'
cpc=0
cpe=2
Number of Possible Good Moves=19
move 3='2512'
Bad Move!
Do you want to see the good moves?1

Actual Good Moves
0 2 4 0
2 0 4 0
2 2 3 4
2 2 4 0
2 3 3 4
2 5 4 2
2 5 4 4
2 5 4 5
2 5 5 4
3 2 3 4
4 2 0 0
4 2 3 2
4 2 3 3
4 2 3 4
4 2 4 0
4 3 3 2
4 5 4 2
4 5 5 2
5 5 4 2
move 4='2545'
cpc=0
cpe=2
Number of Possible Good Moves=6
move 5='2542'
Bad Move!
Do you want to see the good moves?1

Actual Good Moves
3 2 3 4
4 2 0 0
4 2 3 2
4 2 3 3
4 2 3 4
4 3 3 2
move 6='4233'
cpc=3
cpe=0
Number of Possible Good Moves=2
move 7='4234'
cpc=4
cpe=0
**You Found It! in 7 moves, with 2 bad
moves **

As you can see, my performance is not bad…for a
human!

A very good human master mind player would be
someone that don’t make bad moves.
After this digression I think you are just guessing my
Master Mind with Feedback algorithm that I will present
in pseudo-code:

1. input(n_digits, maximum_digit)
2. secret_code=generate_secret_code(n_digits,

maximum_digit)
3. cpc=cpe=0
4. while cpc < n_digits
 flag_bad_moves=1
 while flag_bad_moves
 move=input(‘your move’)

flag_bad_moves=search(move,good_moves)
 cpc=calculate_cpc(move,secret_code)
 cpe=calculate_cpe(move,secret_code)

good_moves=select_good_moves(good_moves,secret_c
ode,move,cpc,cpe)

5 Introducing Noise in the Chosen Good

Move

In this first approach we try to simulate a human playing
mastermind introducing noise in certain digits and in some
moves, i.e. altering the chosen good move for certain
moves. The good move is always coherent with all the
previous moves and cpc and cpe.
Let’s see an example for secret code 0005, where we
introduce noise in all 4 digits varying between 0..5 and
only in moves 2, 4 and 6:

1. 1223 CPC=0, CPE=0
From this move we can infer that 1, 2 and 3 do not belong
to the secret code, but in the second move:
2. 5211 CPC=0, CPE=1
In this move only the 5 makes sense! From this information
we know that there is at least one 5 in the second and/or
third and/or fourth positions of the secret code.
3. 0445 CPC=2, CPE=0
Once this time we did not introduce noise this is a good
move, i.e. coherent with all the previous. Now we know
that there exist a 5 in the last position and a 4 in the second
or third positions or a 0 in the first position.
The next move, where we will introduce noise, is totally
nonsense since it is a permutation of the first move:
4. 2312 CPC=0, CPE=0
The next move, were we will not introduce noise, is
obviously a good move:
5. 0055 CPC=3, CPE=0

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp225-230)

Now with this new information we know that exists a 0
in the first or second position and two 5’s or exists one
5 and two 0’s.
So the good moves are only 0005! We do not need more
information to get the secret code, but since in the next
move we will introduce noise, we will not reach that
conclusion:
6. 5152 CPC=0, CPE=1
Since in the next move we will not introduce noise, the
algorithm will reach our conclusion:
7. ENOUGH INFORMATION! SECRET CODE:
0005

6 Conclusions and Future Work
Although a little bit simplistic, our approach is an
original first step toward the modelling of a very
complex cognitive task, an human playing the
mastermind game.
 In the near future we also plan to consider the
limitations of working memory and logical thinking
which could be modeled by a varying limit in the
number of previous moves to be considered to generate
the next good move that would next also be altered.
 Another vector of possible evolution of our work
could be the development of a complementary
psychological test based on the Mastermind with
Feedback algorithm from which we could calculate
various scores characterizing the level of logical
thinking errors.

References:
[1] J. Barahona da Fonseca, Curriculum Vitae, (written

in Portuguese), May 1989.
[2] G. Charlton, M. Harrison, M and D. Jones, The

Turing Criterion : Machine Intelligent Programs for
the 16K ZX81, Interface Publications, 1982.

[3] N. A. Stillings, S. E. Weisler, C. H. Chase, M. H.
Feinstein, J. L. Garfield, and E. L. Rissland,
Cognitive Science: An Introduction, MIT Press,
1995.

[4] D. Knuth, “The Computer as Master Mind”, Journal
of. Recreational Mathematics, Vol. 9(1), 1976, pp.
1-6.

[5] Bento, L and Pereira, L, “Mastermind por
Algoritmos Genéticos”, in Proceedings of Workshop
on Genetic Algorithms and Artificial Life, pp. 43-47,
(written in Portuguese), DEEC, IST, Technical
University of Lisbon, Portugal, 1996.

[6] Bento, L, Pereira, L and Rosa, A C, “Mastermind by
Evolutionary Algorithms”, Proceedings of ACM
SAC 99, pp. 307-311, San Antonio, Brasil, 1999.

[7] Chvátal, V, “Mastermind”, Combinatorica, 3:325-
329, 1983.

[8] Flood, M M, “Mastermind Strategy”, Journal of
Recreational Mathematics, 18(3):194-202, 1985-86.

[9] Flood, M M, “Sequential Search Sequences with
Mastermind Variants- part 1”, Journal of
Recreational Mathematics, 20(2):105-126, 1988.

[10] Flood, M M, “Sequential Search Sequences with
Mastermind Variants- part 2”, Journal of
Recreational Mathematics, 20(3):168-181, 1988.

[11] Irving, R W, “Towards an Optimum Mastermind
Strategy”, Journal of. Recreational Mathematics,
11(2):81-87, 1978-79.

[12] Koyoma, K and Lai, T W, “An Optimal
Mastermind Strategy”, Journal of. Recreational
Mathematics, 25(4):251-256, 1993.

[13] Neuwirth, E, “Some Strategies for Mastermind”,
Zeitschrift fürOperations Research, 26:B257-
B278, 1982.

[14] Rada, R, “Mastermind in SIGART”, SIGART
Newsletter, 89:24-25, July 1984.

[15] Rao, T M, Kazin, G and O’Brien, D, “Algorithms
to Play Mastermind”, SIGART Newsletter, 95:33-
35, January 1986.

[16] Shapiro, E, “Playing Mastermind Logically”,
SIGART Newsletter, 85:28-29, 1983.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp225-230)

