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Abstract: - In a previous work we presented an algorithm inspired in the Artificial Intelligence and in the 
minimax optimization that imitates the human being in the solution of the magic square and we showed that in 
most cases its performance was better than the human’s performance and even better than the performance of the 
best genetic algorithms to solve the magic square, in terms of number of changes. 
    In this paper we adapt and transform this algorithm to solve the optimization of an AGVs network problem, 
using as a test case 9 workstations in fixed positions and 9 operations to be executed, and the optimization 
problem is translated in the search of which of the 9! possible manners to distribute 9 operations by the 9 
workstations that minimizes the total production time for a given plan of production. 
    This gradual process of adaptation and transformation resulted in an evolutionary hybrid algorithm with high 
performances, with a little bit of Tabu Search and a little bit of genetic algorithm. In 1000 successive runs, with 
the two tabu flags On, it never failed in the search of one of the 4 optimal solutions and never took more than 
3000 iterations and 9!= 362880.  
   As a final validation test, using random search, in 1000 runs it never reached the optimal solution at the end of 
100000 iterations. 
    In the near future we plan to consider the more general case where the number of workstations is greater than 
the number of operations, and so there are some workstations that make the same operation. This turns the 
problem more complex since when a product has operations that are executed by various workstations we must 
search all the possible combinations and find the path with minimum distance. Furthermore the generation of all 
‘permutations with repetitions’ is more complex and in the literature there are no published algorithm to generate 
this type of combinatorial entities. 
 
Key-Words: - AI Minimax Algorithm to Solve the Magic Square, Optimization of AGVs Networks, Hybrid 
Algorithm to Optimize AGVs Networks, Evolutionary Algorithm to Optimize AGVs Networks. 
 
1 Introduction 
The layout optimization is a difficult and complex 
problem due to the combinatorial explosive number of 
possible solutions and due to the dependence and 
interaction of the layout optimal solution with the 
optimal solution of production planning and 
scheduling. In this first approach we will only study the 
optimization of an AGVs network with 9 workstations 
and 9 operations, for a given production plan of a set of 
products defined as linear sequences of subsets of the 9 
operations. 
A possible solution will be a permutation of the nine 
operations. Since 9! it is not a too big number in terms 
of iterations of a computer program, as a preliminary 
exercise we generated all the 9! permutations and we 
got four optimal solutions. 
We began to solve the problem with mixed integer 
programming (MIP) with the need of a lot of artificious 

tricks to linearize the model, but the final result was a 
deception: even for 9 workstations our optimization 
software package presented a runtime of the order of 2 
days in a 1 GHz PC. 
The algorithm that we present is an intermediary pass 
towards a more efficient evolutionary algorithm to 
optimize AGVs networks and then to optimize FMS 
layouts with AGVs networks. It is the result of a process 
of adaptation and transformation of our AI minimax 
algorithm to solve the magic square which presented a 
better performance than the best published evolutionary 
algorithms to solve the magic square [1]. 
 
2 Generation of All Optimal Solutions 
Let’s first of all to define exactly our AGVs network with 
9 workstations, the production plan, the products and the 
operations. The AGVs network is a 3x5 matrix, where the 
first and last columns correspond to automatic warehouse 
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accesses, being the lines equally separated as well as the 
columns. The production plan is simply the definition of 
the number of units to be produced of each product. In 
table 1 we show the production plan used in our model. 
Each product is defined by a linear sequence of a subset 
of the 9 operations. In table 2 we show the sequences of 
operations that define each product. In table 3 we show 
the duration of each operation. Finally in table 4 we show 
the four optimal solutions that we got through the 
exhaustive generation of all the 9! permutations of 9 
operations. 
 

Parameters 
Plano_prod(k) plano de producao 

produto_i->n_unidades_i 
/p1 5 
p2 7 
p3 8 
p4 6 
p5 3 
p6 4/ 

Table 1. Production plan used in this 
work. 

Table Produto_ops(k,opi) definicao da seq de ops de cada 
produto 

     Nop op1 op2 op3 op4 op5 op6 op7 op8 op9 
p1  7     5     6    2      0    1      3    0     7     4 
p2  4     4     3    0      0    0      2    0     0     1 
p3  8     1     7    5      8    3      6    4     0     2 
p4  9     6     4    5      3    2      7    1     9     8 
p5  6     5     6    2      1    0      0    3     0      4 

 p6  8     0     5    2      6    8      7    3     4      1; 
 

Table 2. Definition of each product. 
 
 

t_exec_op(opi) tempo de execucao das 
operacoes em segs 

  /Nop 0 
   op1 5 
   op2 7 

    op3 10 
    op4 15 
    op5 13 
    op6 12 
    op7 11 
    op8 10 

      op9  9/; 
 

Table 3. Definition of the duration of 
each operation. 

 
 
 
 

Tprodution=2058 s 
 

Permutation=1373 
Distribution of Operations by the Workstations: 

0     2     3     5     0     0    10     7     4     0     0     9     6     8 
Execution Time of each Product: 
180    69   186   268   151   237 

 
Permutation=39673 

Distribution of Operations by the Workstations: 
0     2    10     9     0     0     3     7     4     0     0     5     6     8 

Execution Time of each Product: 
180    75   186   236   177   255 

 
Permutation=39673 

Distribution of Operations by the Workstations: 
0     2    10     9     0     0     3     7     4     0     0     5     6     8 

Execution Time of each Product: 
180    75   186   236   177   255 

 
Permutation=266016 

Distribution of Operations by the Workstations: 
0     8     6     9     0     0     4     7    10     0     0     5     3     2 

Execution Time of each Product: 
180    69   186   268   151   237 

 
Table 4. All the 4 Optimal Solutions obtained through 

the generation of all the 9! permutations of  9 
operations. 

 
 

3 Optimal Solution Obtained with MIP 
The great difficulty that we have to solve during the 
solution of the optimisation of the AGVs network with 
9 workstations with MIP was that we cannot make 
nonlinear operations over the variables of the model.  
    We solved the problem of permutation generation 
with a binary variable with two indexes, the 
workstation and the operation executed by it, and in this 
way we defined the logic of permutation generation 
with only arithmetic operations and iterative sums.  
    The problem of the need of a logical AND operation 
between two of these binary variables was solved with 
a new binary variable with 4 indexes, each pair of 
indexes signifying that that the operation i was 
attributed to the workstation j, and we have to create a 
set of constraints to guarantee the coherence between 
this binary variable and the previous binary variable 
that defined the permutation of operations or, by other 
words, the disposition of machines in the 3x3 matrix.  
    In table 5 we show the optimal solution obtained 
with this MIP model after two days of computation in a 
1 GHz PC.  
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----    292 VARIABLE t_prodution.L          =     2058.0 
 
PARAMETER n_agvs               =        1.745 
 
----    292 VARIABLE est_q_ex.L 
 
              e2          e3          e4          e5          e6          e7 
 
op1       1.000 
op2                   1.000 
op3                                                                         1.000 
op4                               1.000 
op6                                                           1.000 
op9                                            1.000 
 
+         e8         e9         e10 
 
op5                1.000 
op7                              1.000 
op8    1.000 
 
 
----    292 VARIABLE t_exec_product.L 
 
p1 180.000,    p2  69.000,    p3 186.000,    p4 268.000,    
p5 151.000, vp6 237.0 
 

Table 5. Optimal solution obtained with MIP that 
corresponds to the first solution obtained with 

exhaustive search. 
  
 
4 Hybrid Algorithm for the Optimization 
of AGVs Networks 
We will make only a qualitative description of this 
algorithm.  
    Having as departure point a given permutation of 
operations, it search a new one changing randomly two 
operations and that new permutation is accepted if the 
production time associated to it is significantly less than 
the previous; if the first tabu flag is on then the new 
permutation is saved in the first tabu list. If at the end of 
a given limit number of change trials it has not found a 
better permutation, then if the second tabu flag is on the 
last permutation is saved in the second tabu list and 
after this is accepted the change that maximizes the 
production time increase over a set of operations pairs 
randomly generated.  
    When it is generated a permutation that already exists 
in the first tabu list, that permutation is rejected and it 
reaches a permutation that exists in the second tabu list it 
returns to a previous solution that exists in the first tabu 
list.  
    Although simple this algorithm presented a 

performance in terms of the iterations number always 
much less than 9! or even 9!/100.  
    Next we show some results of computational 
experiences with this algorithm. In table 6 we present na 
example of a trace of a run with the two tabu flags off, 
departing from a sequential filling. As a curiosity, 
although it passes two times by the same solution that 
corresponds to a production time of 2121s, in the second 
time it travels a different path that leads to the optimal 
solution. In the next tables we show the statistics over 
1000 runs, where it can be seen a significant improvement 
of the performance as the tabu flags got activated. 
 
 

TprodutionMin= %2735 @ Niterations=1,  
0  2  3  4  0  0  5  6  7  0  0  8  9 10  0 

TprodutionMin= %2611 @ Niterations=4, 
 0  2  4  3  0  0 10  6  7  0  0  5  9  8  0 

TprodutionMin= %2442 @ Niterations=8,  
0  2  4  6  0  0  3 10  7  0  0  5  9  8  0 

TprodutionMin= %2353 @ Niterations=9,  
0  2  4  9  0  0  3 10  7  0  0  5  6  8  0 

TprodutionMin= %2269 @ Niterations=17,  
0  2  4  9  0  0  3  7 10  0  0  5  8  6  0 

TprodutionMin= %2259 @ Niterations=18,  
0  2  3  9  0  0  4  7 10  0  0  5  8  6  0 

TprodutionMin= %2241 @ Niterations=37,  
0  2  7 10  0  0  4  3  5  0  0  9  8  6  0 

TprodutionMin= %2223 @ Niterations=93,  
0  5  6  8  0  0  3  4  2  0  0  9  7 10  0 

TprodutionMin= %2219 @ Niterations=124,  
0  5  6  8  0  0  3  4  7  0  0  9 10  2  0 

TprodutionMin= %2156 @ Niterations=125,  
0  5  6  8  0  0  3  4  7  0  0  9  2 10  0 

TprodutionMin= %2139 @ Niterations=127,  
0  5  8  6  0  0  3  4  7  0  0  2  9 10  0 

TprodutionMin= %2121 @ Niterations=256,  
0  5  6  8  0  0  3  7  4  0  0  9  2 10  0 

TprodutionMin= %2086 @ Niterations=271,  
0  5  6  8  0  0  3  7  4  0  0  9 10  2  0 

TprodutionMin= %2121 @ Niterations=372,  
0  5  6  8  0  0  3  7  4  0  0  9  2 10  0 

TprodutionMin= %2097 @ Niterations=442,  
0  5  8  6  0  0  3  4  7  0  0  9  2 10  0 

TprodutionMin= %2058 @ Niterations=661, 
0  5  6  8  0  0  3  7  4  0  0  2 10  9  0 

 
Table 6. Exemple of a run with initial sequential filling  

and the two tabu flags off. 
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Niters_max=6177, over 1000 Runs 
                 For Niters < 100, Nruns=37 

For 100 < Niters < 200, Nruns=82 
For 200 < Niters < 300, Nruns=73 
For 300 < Niters < 400, Nruns=82 
For 400 < Niters < 500, Nruns=88 
For 500 < Niters < 600, Nruns=69 
For 600 < Niters < 700, Nruns=44 
For 700 < Niters < 800, Nruns=35 
For 800 < Niters < 900, Nruns=51 

For 900 < Niters < 1000, Nruns=37 
For 1000 < Niters < 1100, Nruns=34 
For 1100 < Niters < 1200, Nruns=33 
For 1200 < Niters < 1300, Nruns=35 
For 1300 < Niters < 1400, Nruns=33 
For 1400 < Niters < 1500, Nruns=22 
For 1500 < Niters < 1600, Nruns=21 
For 1600 < Niters < 1700, Nruns=21 
For 1700 < Niters < 1800, Nruns=17 
For 1800 < Niters < 1900, Nruns=13 
For 1900 < Niters < 2000, Nruns=16 
For 2000 < Niters < 2100, Nruns=9 

For 2100 < Niters < 2200, Nruns=15 
For 2200 < Niters < 2300, Nruns=7 

For 2300 < Niters < 2400, Nruns=14 
For 2400 < Niters < 2500, Nruns=7 
For 2500 < Niters < 2600, Nruns=7 
For 2600 < Niters < 2700, Nruns=6 
For 2700 < Niters < 2800, Nruns=5 
For 2800 < Niters < 2900, Nruns=8 
For 2900 < Niters < 3000, Nruns=9 

For Niters > 3000, Nruns=70 
 

Table 7. Statistic over 1000 runs in terms of the 
iterations number with the two tabu flags off. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Niters_max=2911, over 1000 Runs 
For Niters < 100, Nruns=53 

For 100 < Niters < 200, Nruns=89 
For 200 < Niters < 300, Nruns=102 
For 300 < Niters < 400, Nruns=101 
For 400 < Niters < 500, Nruns=107 
For 500 < Niters < 600, Nruns=96 
For 600 < Niters < 700, Nruns=81 
For 700 < Niters < 800, Nruns=86 
For 800 < Niters < 900, Nruns=53 

For 900 < Niters < 1000, Nruns=63 
For 1000 < Niters < 1100, Nruns=38 
For 1100 < Niters < 1200, Nruns=34 
For 1200 < Niters < 1300, Nruns=23 
For 1300 < Niters < 1400, Nruns=16 
For 1400 < Niters < 1500, Nruns=13 
For 1500 < Niters < 1600, Nruns=9 
For 1600 < Niters < 1700, Nruns=7 
For 1700 < Niters < 1800, Nruns=7 
For 1800 < Niters < 1900, Nruns=4 
For 1900 < Niters < 2000, Nruns=3 
For 2000 < Niters < 2100, Nruns=3 
For 2100 < Niters < 2200, Nruns=3 
For 2200 < Niters < 2300, Nruns=0 
For 2300 < Niters < 2400, Nruns=1 
For 2400 < Niters < 2500, Nruns=2 
For 2500 < Niters < 2600, Nruns=0 
For 2600 < Niters < 2700, Nruns=2 
For 2700 < Niters < 2800, Nruns=1 
For 2800 < Niters < 2900, Nruns=2 
For 2900 < Niters < 3000, Nruns=1 

For Niters > 3000, Nruns=0 
 

Table 8. Statistic over 1000 runs with only the first 
tabu flag on. 
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Niters_max=2987, over 1000 Runs 
For Niters < 100, Nruns=53 

For 100 < Niters < 200, Nruns=93 
For 200 < Niters < 300, Nruns=106 
For 300 < Niters < 400, Nruns=96 
For 400 < Niters < 500, Nruns=98 
For 500 < Niters < 600, Nruns=77 
For 600 < Niters < 700, Nruns=74 
For 700 < Niters < 800, Nruns=82 
For 800 < Niters < 900, Nruns=68 

For 900 < Niters < 1000, Nruns=55 
For 1000 < Niters < 1100, Nruns=45 
For 1100 < Niters < 1200, Nruns=26 
For 1200 < Niters < 1300, Nruns=29 
For 1300 < Niters < 1400, Nruns=19 
For 1400 < Niters < 1500, Nruns=21 
For 1500 < Niters < 1600, Nruns=18 
For 1600 < Niters < 1700, Nruns=7 
For 1700 < Niters < 1800, Nruns=7 
For 1800 < Niters < 1900, Nruns=3 
For 1900 < Niters < 2000, Nruns=6 
For 2000 < Niters < 2100, Nruns=2 
For 2100 < Niters < 2200, Nruns=7 
For 2200 < Niters < 2300, Nruns=0 
For 2300 < Niters < 2400, Nruns=1 
For 2400 < Niters < 2500, Nruns=3 
For 2500 < Niters < 2600, Nruns=0 
For 2600 < Niters < 2700, Nruns=1 
For 2700 < Niters < 2800, Nruns=2 
For 2800 < Niters < 2900, Nruns=0 
For 2900 < Niters < 3000, Nruns=1 

For Niters > 3000, Nruns=0 
 

Table 9. Statistic over 1000 runs with only the second 
tabu flag on. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Niters_max=3210, over 1000 Runs 
For Niters < 100, Nruns=35 

For 100 < Niters < 200, Nruns=109 
For 200 < Niters < 300, Nruns=89 

For 300 < Niters < 400, Nruns=102 
For 400 < Niters < 500, Nruns=108 
For 500 < Niters < 600, Nruns=88 
For 600 < Niters < 700, Nruns=75 
For 700 < Niters < 800, Nruns=78 
For 800 < Niters < 900, Nruns=50 

For 900 < Niters < 1000, Nruns=49 
For 1000 < Niters < 1100, Nruns=39 
For 1100 < Niters < 1200, Nruns=39 
For 1200 < Niters < 1300, Nruns=35 
For 1300 < Niters < 1400, Nruns=28 
For 1400 < Niters < 1500, Nruns=23 
For 1500 < Niters < 1600, Nruns=16 
For 1600 < Niters < 1700, Nruns=9 

For 1700 < Niters < 1800, Nruns=10 
For 1800 < Niters < 1900, Nruns=5 
For 1900 < Niters < 2000, Nruns=5 
For 2000 < Niters < 2100, Nruns=4 
For 2100 < Niters < 2200, Nruns=1 
For 2200 < Niters < 2300, Nruns=0 
For 2300 < Niters < 2400, Nruns=0 
For 2400 < Niters < 2500, Nruns=0 
For 2500 < Niters < 2600, Nruns=2 
For 2600 < Niters < 2700, Nruns=0 
For 2700 < Niters < 2800, Nruns=0 
For 2800 < Niters < 2900, Nruns=0 
For 2900 < Niters < 3000, Nruns=0 

For Niters > 3000, Nruns=1 
 

Table 10. Statistic over 1000 runs with the two tabu 
flags on. 
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5 Conclusions and Future Work 
Although very promising, we need a good reference to 
compare our algorithm, and we are implementing the 
OmeGA algorithm [2] and it is also planned the 
application of various commercial programs to design the 
layout of FMS also to the same AGVs  network with 9 
workstations and the same production plan.  
    In the near future we also plan to consider the more 
general case where the number of workstations is greater 
than the number of operations, and so there are some 
workstations that make the same operation. This turns the 
problem more complex since when a product has 
operations that are executed by various workstations we 
must search all the possible combinations and find the 
path with minimum distance. Furthermore the generation 
of all ‘permutations with repetitions’ is more complex 
and in the literature there are no published algorithm to 
generate this type of combinatorial entities. 
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