
From the Magic Square to the Optimization of Networks of AGVs and
from MIP to an Hybrid Algorithm and from this One to the

Evolutionary Computation

JOSÉ BARAHONA DA FONSECA
Department of Electrical Engineering and Computer Science

New University of Lisbon
Monte de Caparica, 2829-516 Caparica

PORTUGAL
 http://www.dee.fct.unl.pt

Abstract: - In a previous work we presented an algorithm inspired in the Artificial Intelligence and in the
minimax optimization that imitates the human being in the solution of the magic square and we showed that in
most cases its performance was better than the human’s performance and even better than the performance of the
best genetic algorithms to solve the magic square, in terms of number of changes.
 In this paper we adapt and transform this algorithm to solve the optimization of an AGVs network problem,
using as a test case 9 workstations in fixed positions and 9 operations to be executed, and the optimization
problem is translated in the search of which of the 9! possible manners to distribute 9 operations by the 9
workstations that minimizes the total production time for a given plan of production.
 This gradual process of adaptation and transformation resulted in an evolutionary hybrid algorithm with high
performances, with a little bit of Tabu Search and a little bit of genetic algorithm. In 1000 successive runs, with
the two tabu flags On, it never failed in the search of one of the 4 optimal solutions and never took more than
3000 iterations and 9!= 362880.
 As a final validation test, using random search, in 1000 runs it never reached the optimal solution at the end of
100000 iterations.
 In the near future we plan to consider the more general case where the number of workstations is greater than
the number of operations, and so there are some workstations that make the same operation. This turns the
problem more complex since when a product has operations that are executed by various workstations we must
search all the possible combinations and find the path with minimum distance. Furthermore the generation of all
‘permutations with repetitions’ is more complex and in the literature there are no published algorithm to generate
this type of combinatorial entities.

Key-Words: - AI Minimax Algorithm to Solve the Magic Square, Optimization of AGVs Networks, Hybrid
Algorithm to Optimize AGVs Networks, Evolutionary Algorithm to Optimize AGVs Networks.

1 Introduction
The layout optimization is a difficult and complex
problem due to the combinatorial explosive number of
possible solutions and due to the dependence and
interaction of the layout optimal solution with the
optimal solution of production planning and
scheduling. In this first approach we will only study the
optimization of an AGVs network with 9 workstations
and 9 operations, for a given production plan of a set of
products defined as linear sequences of subsets of the 9
operations.
A possible solution will be a permutation of the nine
operations. Since 9! it is not a too big number in terms
of iterations of a computer program, as a preliminary
exercise we generated all the 9! permutations and we
got four optimal solutions.
We began to solve the problem with mixed integer
programming (MIP) with the need of a lot of artificious

tricks to linearize the model, but the final result was a
deception: even for 9 workstations our optimization
software package presented a runtime of the order of 2
days in a 1 GHz PC.
The algorithm that we present is an intermediary pass
towards a more efficient evolutionary algorithm to
optimize AGVs networks and then to optimize FMS
layouts with AGVs networks. It is the result of a process
of adaptation and transformation of our AI minimax
algorithm to solve the magic square which presented a
better performance than the best published evolutionary
algorithms to solve the magic square [1].

2 Generation of All Optimal Solutions
Let’s first of all to define exactly our AGVs network with
9 workstations, the production plan, the products and the
operations. The AGVs network is a 3x5 matrix, where the
first and last columns correspond to automatic warehouse

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp117-122)

accesses, being the lines equally separated as well as the
columns. The production plan is simply the definition of
the number of units to be produced of each product. In
table 1 we show the production plan used in our model.
Each product is defined by a linear sequence of a subset
of the 9 operations. In table 2 we show the sequences of
operations that define each product. In table 3 we show
the duration of each operation. Finally in table 4 we show
the four optimal solutions that we got through the
exhaustive generation of all the 9! permutations of 9
operations.

Parameters
Plano_prod(k) plano de producao

produto_i->n_unidades_i
/p1 5
p2 7
p3 8
p4 6
p5 3
p6 4/

Table 1. Production plan used in this
work.

Table Produto_ops(k,opi) definicao da seq de ops de cada
produto

 Nop op1 op2 op3 op4 op5 op6 op7 op8 op9
p1 7 5 6 2 0 1 3 0 7 4
p2 4 4 3 0 0 0 2 0 0 1
p3 8 1 7 5 8 3 6 4 0 2
p4 9 6 4 5 3 2 7 1 9 8
p5 6 5 6 2 1 0 0 3 0 4

 p6 8 0 5 2 6 8 7 3 4 1;

Table 2. Definition of each product.

t_exec_op(opi) tempo de execucao das
operacoes em segs

 /Nop 0
 op1 5
 op2 7

 op3 10
 op4 15
 op5 13
 op6 12
 op7 11
 op8 10

 op9 9/;

Table 3. Definition of the duration of
each operation.

Tprodution=2058 s

Permutation=1373
Distribution of Operations by the Workstations:

0 2 3 5 0 0 10 7 4 0 0 9 6 8
Execution Time of each Product:
180 69 186 268 151 237

Permutation=39673

Distribution of Operations by the Workstations:
0 2 10 9 0 0 3 7 4 0 0 5 6 8

Execution Time of each Product:
180 75 186 236 177 255

Permutation=39673

Distribution of Operations by the Workstations:
0 2 10 9 0 0 3 7 4 0 0 5 6 8

Execution Time of each Product:
180 75 186 236 177 255

Permutation=266016

Distribution of Operations by the Workstations:
0 8 6 9 0 0 4 7 10 0 0 5 3 2

Execution Time of each Product:
180 69 186 268 151 237

Table 4. All the 4 Optimal Solutions obtained through

the generation of all the 9! permutations of 9
operations.

3 Optimal Solution Obtained with MIP
The great difficulty that we have to solve during the
solution of the optimisation of the AGVs network with
9 workstations with MIP was that we cannot make
nonlinear operations over the variables of the model.
 We solved the problem of permutation generation
with a binary variable with two indexes, the
workstation and the operation executed by it, and in this
way we defined the logic of permutation generation
with only arithmetic operations and iterative sums.
 The problem of the need of a logical AND operation
between two of these binary variables was solved with
a new binary variable with 4 indexes, each pair of
indexes signifying that that the operation i was
attributed to the workstation j, and we have to create a
set of constraints to guarantee the coherence between
this binary variable and the previous binary variable
that defined the permutation of operations or, by other
words, the disposition of machines in the 3x3 matrix.
 In table 5 we show the optimal solution obtained
with this MIP model after two days of computation in a
1 GHz PC.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp117-122)

---- 292 VARIABLE t_prodution.L = 2058.0

PARAMETER n_agvs = 1.745

---- 292 VARIABLE est_q_ex.L

 e2 e3 e4 e5 e6 e7

op1 1.000
op2 1.000
op3 1.000
op4 1.000
op6 1.000
op9 1.000

+ e8 e9 e10

op5 1.000
op7 1.000
op8 1.000

---- 292 VARIABLE t_exec_product.L

p1 180.000, p2 69.000, p3 186.000, p4 268.000,
p5 151.000, vp6 237.0

Table 5. Optimal solution obtained with MIP that
corresponds to the first solution obtained with

exhaustive search.

4 Hybrid Algorithm for the Optimization
of AGVs Networks
We will make only a qualitative description of this
algorithm.
 Having as departure point a given permutation of
operations, it search a new one changing randomly two
operations and that new permutation is accepted if the
production time associated to it is significantly less than
the previous; if the first tabu flag is on then the new
permutation is saved in the first tabu list. If at the end of
a given limit number of change trials it has not found a
better permutation, then if the second tabu flag is on the
last permutation is saved in the second tabu list and
after this is accepted the change that maximizes the
production time increase over a set of operations pairs
randomly generated.
 When it is generated a permutation that already exists
in the first tabu list, that permutation is rejected and it
reaches a permutation that exists in the second tabu list it
returns to a previous solution that exists in the first tabu
list.
 Although simple this algorithm presented a

performance in terms of the iterations number always
much less than 9! or even 9!/100.
 Next we show some results of computational
experiences with this algorithm. In table 6 we present na
example of a trace of a run with the two tabu flags off,
departing from a sequential filling. As a curiosity,
although it passes two times by the same solution that
corresponds to a production time of 2121s, in the second
time it travels a different path that leads to the optimal
solution. In the next tables we show the statistics over
1000 runs, where it can be seen a significant improvement
of the performance as the tabu flags got activated.

TprodutionMin= %2735 @ Niterations=1,
0 2 3 4 0 0 5 6 7 0 0 8 9 10 0

TprodutionMin= %2611 @ Niterations=4,
 0 2 4 3 0 0 10 6 7 0 0 5 9 8 0

TprodutionMin= %2442 @ Niterations=8,
0 2 4 6 0 0 3 10 7 0 0 5 9 8 0

TprodutionMin= %2353 @ Niterations=9,
0 2 4 9 0 0 3 10 7 0 0 5 6 8 0

TprodutionMin= %2269 @ Niterations=17,
0 2 4 9 0 0 3 7 10 0 0 5 8 6 0

TprodutionMin= %2259 @ Niterations=18,
0 2 3 9 0 0 4 7 10 0 0 5 8 6 0

TprodutionMin= %2241 @ Niterations=37,
0 2 7 10 0 0 4 3 5 0 0 9 8 6 0

TprodutionMin= %2223 @ Niterations=93,
0 5 6 8 0 0 3 4 2 0 0 9 7 10 0

TprodutionMin= %2219 @ Niterations=124,
0 5 6 8 0 0 3 4 7 0 0 9 10 2 0

TprodutionMin= %2156 @ Niterations=125,
0 5 6 8 0 0 3 4 7 0 0 9 2 10 0

TprodutionMin= %2139 @ Niterations=127,
0 5 8 6 0 0 3 4 7 0 0 2 9 10 0

TprodutionMin= %2121 @ Niterations=256,
0 5 6 8 0 0 3 7 4 0 0 9 2 10 0

TprodutionMin= %2086 @ Niterations=271,
0 5 6 8 0 0 3 7 4 0 0 9 10 2 0

TprodutionMin= %2121 @ Niterations=372,
0 5 6 8 0 0 3 7 4 0 0 9 2 10 0

TprodutionMin= %2097 @ Niterations=442,
0 5 8 6 0 0 3 4 7 0 0 9 2 10 0

TprodutionMin= %2058 @ Niterations=661,
0 5 6 8 0 0 3 7 4 0 0 2 10 9 0

Table 6. Exemple of a run with initial sequential filling

and the two tabu flags off.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp117-122)

Niters_max=6177, over 1000 Runs
 For Niters < 100, Nruns=37

For 100 < Niters < 200, Nruns=82
For 200 < Niters < 300, Nruns=73
For 300 < Niters < 400, Nruns=82
For 400 < Niters < 500, Nruns=88
For 500 < Niters < 600, Nruns=69
For 600 < Niters < 700, Nruns=44
For 700 < Niters < 800, Nruns=35
For 800 < Niters < 900, Nruns=51

For 900 < Niters < 1000, Nruns=37
For 1000 < Niters < 1100, Nruns=34
For 1100 < Niters < 1200, Nruns=33
For 1200 < Niters < 1300, Nruns=35
For 1300 < Niters < 1400, Nruns=33
For 1400 < Niters < 1500, Nruns=22
For 1500 < Niters < 1600, Nruns=21
For 1600 < Niters < 1700, Nruns=21
For 1700 < Niters < 1800, Nruns=17
For 1800 < Niters < 1900, Nruns=13
For 1900 < Niters < 2000, Nruns=16
For 2000 < Niters < 2100, Nruns=9

For 2100 < Niters < 2200, Nruns=15
For 2200 < Niters < 2300, Nruns=7

For 2300 < Niters < 2400, Nruns=14
For 2400 < Niters < 2500, Nruns=7
For 2500 < Niters < 2600, Nruns=7
For 2600 < Niters < 2700, Nruns=6
For 2700 < Niters < 2800, Nruns=5
For 2800 < Niters < 2900, Nruns=8
For 2900 < Niters < 3000, Nruns=9

For Niters > 3000, Nruns=70

Table 7. Statistic over 1000 runs in terms of the
iterations number with the two tabu flags off.

Niters_max=2911, over 1000 Runs
For Niters < 100, Nruns=53

For 100 < Niters < 200, Nruns=89
For 200 < Niters < 300, Nruns=102
For 300 < Niters < 400, Nruns=101
For 400 < Niters < 500, Nruns=107
For 500 < Niters < 600, Nruns=96
For 600 < Niters < 700, Nruns=81
For 700 < Niters < 800, Nruns=86
For 800 < Niters < 900, Nruns=53

For 900 < Niters < 1000, Nruns=63
For 1000 < Niters < 1100, Nruns=38
For 1100 < Niters < 1200, Nruns=34
For 1200 < Niters < 1300, Nruns=23
For 1300 < Niters < 1400, Nruns=16
For 1400 < Niters < 1500, Nruns=13
For 1500 < Niters < 1600, Nruns=9
For 1600 < Niters < 1700, Nruns=7
For 1700 < Niters < 1800, Nruns=7
For 1800 < Niters < 1900, Nruns=4
For 1900 < Niters < 2000, Nruns=3
For 2000 < Niters < 2100, Nruns=3
For 2100 < Niters < 2200, Nruns=3
For 2200 < Niters < 2300, Nruns=0
For 2300 < Niters < 2400, Nruns=1
For 2400 < Niters < 2500, Nruns=2
For 2500 < Niters < 2600, Nruns=0
For 2600 < Niters < 2700, Nruns=2
For 2700 < Niters < 2800, Nruns=1
For 2800 < Niters < 2900, Nruns=2
For 2900 < Niters < 3000, Nruns=1

For Niters > 3000, Nruns=0

Table 8. Statistic over 1000 runs with only the first
tabu flag on.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp117-122)

Niters_max=2987, over 1000 Runs
For Niters < 100, Nruns=53

For 100 < Niters < 200, Nruns=93
For 200 < Niters < 300, Nruns=106
For 300 < Niters < 400, Nruns=96
For 400 < Niters < 500, Nruns=98
For 500 < Niters < 600, Nruns=77
For 600 < Niters < 700, Nruns=74
For 700 < Niters < 800, Nruns=82
For 800 < Niters < 900, Nruns=68

For 900 < Niters < 1000, Nruns=55
For 1000 < Niters < 1100, Nruns=45
For 1100 < Niters < 1200, Nruns=26
For 1200 < Niters < 1300, Nruns=29
For 1300 < Niters < 1400, Nruns=19
For 1400 < Niters < 1500, Nruns=21
For 1500 < Niters < 1600, Nruns=18
For 1600 < Niters < 1700, Nruns=7
For 1700 < Niters < 1800, Nruns=7
For 1800 < Niters < 1900, Nruns=3
For 1900 < Niters < 2000, Nruns=6
For 2000 < Niters < 2100, Nruns=2
For 2100 < Niters < 2200, Nruns=7
For 2200 < Niters < 2300, Nruns=0
For 2300 < Niters < 2400, Nruns=1
For 2400 < Niters < 2500, Nruns=3
For 2500 < Niters < 2600, Nruns=0
For 2600 < Niters < 2700, Nruns=1
For 2700 < Niters < 2800, Nruns=2
For 2800 < Niters < 2900, Nruns=0
For 2900 < Niters < 3000, Nruns=1

For Niters > 3000, Nruns=0

Table 9. Statistic over 1000 runs with only the second
tabu flag on.

Niters_max=3210, over 1000 Runs
For Niters < 100, Nruns=35

For 100 < Niters < 200, Nruns=109
For 200 < Niters < 300, Nruns=89

For 300 < Niters < 400, Nruns=102
For 400 < Niters < 500, Nruns=108
For 500 < Niters < 600, Nruns=88
For 600 < Niters < 700, Nruns=75
For 700 < Niters < 800, Nruns=78
For 800 < Niters < 900, Nruns=50

For 900 < Niters < 1000, Nruns=49
For 1000 < Niters < 1100, Nruns=39
For 1100 < Niters < 1200, Nruns=39
For 1200 < Niters < 1300, Nruns=35
For 1300 < Niters < 1400, Nruns=28
For 1400 < Niters < 1500, Nruns=23
For 1500 < Niters < 1600, Nruns=16
For 1600 < Niters < 1700, Nruns=9

For 1700 < Niters < 1800, Nruns=10
For 1800 < Niters < 1900, Nruns=5
For 1900 < Niters < 2000, Nruns=5
For 2000 < Niters < 2100, Nruns=4
For 2100 < Niters < 2200, Nruns=1
For 2200 < Niters < 2300, Nruns=0
For 2300 < Niters < 2400, Nruns=0
For 2400 < Niters < 2500, Nruns=0
For 2500 < Niters < 2600, Nruns=2
For 2600 < Niters < 2700, Nruns=0
For 2700 < Niters < 2800, Nruns=0
For 2800 < Niters < 2900, Nruns=0
For 2900 < Niters < 3000, Nruns=0

For Niters > 3000, Nruns=1

Table 10. Statistic over 1000 runs with the two tabu
flags on.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp117-122)

5 Conclusions and Future Work
Although very promising, we need a good reference to
compare our algorithm, and we are implementing the
OmeGA algorithm [2] and it is also planned the
application of various commercial programs to design the
layout of FMS also to the same AGVs network with 9
workstations and the same production plan.
 In the near future we also plan to consider the more
general case where the number of workstations is greater
than the number of operations, and so there are some
workstations that make the same operation. This turns the
problem more complex since when a product has
operations that are executed by various workstations we
must search all the possible combinations and find the
path with minimum distance. Furthermore the generation
of all ‘permutations with repetitions’ is more complex
and in the literature there are no published algorithm to
generate this type of combinatorial entities.

References:
[1] J. Barahona da Fonseca, “The Magic Square as a

Benchmark: Comparing Manual Solution to MIP
Solution and to AI Algorithm and to Improved
Evolutionary Algorithm”, in Proceedings of WSEAS
Evolutionary Computation Conference, Lisboa, 2005,
pp. 486-492.

[2] D. Knjazew, OmeGA: A Competent Genetic
Algorithm for Solving Permutation and Scheduling
Problems, Kluwer Academic Publishers, 2002.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp117-122)

