
Testing Genetic Algorithm Recombination Strategies and the

Normalized Compression Distance for Computer-Generated Music

MANUEL ALFONSECA, MANUEL CEBRIÁN and ALFONSO ORTEGA

Escuela Politécnica Superior
Tomás y Valiente, 11

Universidad Autónoma de Madrid
28049 Madrid

SPAIN

Abstract: - This paper analyzes the use of the normalized compression distance as a fitness function for the
automatic generation of music by means of genetic algorithms, and tests the effect on performance of several
genetic recombination procedures. The minimization of the distance of the generated music to a set of
musical guides or targets makes it possible to obtain computer-generated music that reminds the style of a
certain human author. In spite of the simplicity of the algorithm, the procedure obtains interesting results.
The paper includes some considerations on the use of procedures that improve the performance of heavy-
tailed distribution processes.

Keywords: - Evolutionary Computation, Coding and Information Theory, Genetic Algorithms, Computer
Generated Music, Classification, Clustering

Acknowledgement: - This work has been sponsored by the Spanish Ministry of Education and Science
(MEC), project number TSI2005-08225-C07-06.

1. Introduction

The automatic generation of musical compositions
is a long standing, multi disciplinary area of
interest and research in computer science, with
over thirty years history at its back [1-7].

In a previous paper [8] we proposed the use of the
well-known normalized compression distance
[9-11] as a fitness function which may be used by
genetic algorithms to automatically generate
music in a given pre-defined style. The superiority
of the relative pitch envelope over other musical
parameters, such as the lengths of the notes, has
been confirmed, bringing us to develop a
simplified algorithm that nevertheless obtains
interesting results.

In this paper we start on the results of the previous
work and refine them, trying to increase the
efficiency of the procedures described in the
above mentioned paper.

This paper is organized in the following way: the
second section, describes the genetic algorithm we
have used for music generation. In the third
section we present in detail our experiments,
where we have compared the use of four different
recombination procedures for the genetic
algorithm. In the fourth section we explain why a
procedure which has been used successfully in
other kinds of experiments to improve
performance is not indicated in this case. Finally,
the last section presents our conclusions and
possibilities for future work.

2. A genetic algorithm that generates

music

Our genetic algorithm generates music coded as
pairs of integers, the first element in the pair
representing the pitch of a note and the second its
length. This notation can then be transformed to a
note string for reproduction. In this first set of
experiments, the genetic algorithm is applied only
to the relative pitches of the notes in the melody.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp53-58)

The proposed genetic algorithm scheme is
described below.

0. A previous pre-process step:

• Select one or more musical pieces as targets
or guides for music generation.

N

i }{ω=Ω 1

All the ωi must be coded in the same way,
as pairs of integers as described above.

• Code the individuals in the population with
the same coding system as the guides.

• Use the following fitness function:

()
()i

i

ωx,d
=xf

∑ ˆ
1

Where ()yx,d̂ is the normalized compression

distance which was defined in [8]. We expect

that, by maximizing f x (minimizing the
sum of the distances), we will maximize the
number of features shared by the evolving
individuals with the guide set. For example, if

 were the set of Mozart's symphonies, an
individual with a high fitness should resemble
a Mozart symphony.

1. The program generates a random population of
64 vectors of N pairs of integers. We are
currently using for N the length of the first
piece of music in the guide set. The first
integer in each pair is in the [24,48] interval,
the second in the [1,16] interval. Each vector
represents a genotype.

2. The fitness of every genotype is computed as

the distance to the guide set, measured by
means of the normalized compression distance.

3. The 64 genotypes are ordered by their

increasing distance to the guide set.

4. If the lowest distance is less or equal to the

goal distance, the program stops and returns
the notes in the corresponding genotype, paired
with a function of the lengths of the guide
piece(s) of music.

5. From the ordered list of 64 genotypes created

in step 4, the 16 genotypes with least
fitness/highest distance are removed (leaving
48), while the 16 genotypes with most

fitness/lowest distance are selected. These 16
genotypes are paired randomly to make 8 pairs.
Each pair generates another pair, a copy of
their parents, modified according to four
genetic operations. The new 16 genotypes are
added to the remaining population of 48, to
make again 64, and their fitness is computed as
in step 2.

6. Go to step 3.

The four genetic operations mentioned in the
algorithm are:

• Recombination (applied to 100% generated

genotypes). The genotypes of both parents are
combined using different procedures to
generate the genotypes of the progeny.
Different recombination procedures have been
tested in this set of experiments to find the best
combination.

• Mutation (one mutation was applied to every

generated genotype, although this rate may be
modified in different experiments). It consists
of replacing a random element of the vector by
a random integer in the same interval.

• Fusion (applied to a certain percentage of the

generated genotypes, which in our experiments
was varied between 5 and 10). The genotype is
replaced by a catenation of itself with a piece
randomly broken from either itself or its
brother’s genotype.

• Elision (applied to a certain percentage of the

generated genotypes, in our experiments
between 2 and 5). One integer in the vector (in
a random position) is eliminated.

The last two operations, together with some
recombination procedures, allow longer or shorter
genotypes to be obtained from the original N
element vectors.

3. Testing different recombination

procedures

In this set of experiments, we tested the effect of
changing the recombination procedure used by the

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp53-58)

genetic algorithm. The following strategies were
used:
• Strategy 1: given a pair of genotypes, (x1, x2 ...

xn) and (y1, y2 ... ym), a random integer is
generated in the interval [0, mín(n,m)]. Let it
be i. The resulting recombined genotypes are:
(x1, x2 ... xi-1, yi, yi+1 ... ym) and (y1, y2 ... yi-1, xi,
xi+1 ... xn). This is the base case (the simplest
recombination strategy).

• Strategy 2: given a pair of genotypes, (x1, x2 ...

xn) and (y1, y2 ... ym), two random integers are
generated in the interval [0, n] (let us call them
i, j, i<j) and another two in the interval [0,m]
(let us call them p, q). The resulting
recombined genotypes are: (x1, x2 ... xi-1, yp,
yp+1 ... yq-1, xj, xj+1 … xn) and (y1, y2 ... yp-1, xi,
xi+1 ... xj-1, yq, yq+1 ... ym).

• Strategy 3: given a pair of genotypes, (x1, x2 ...

xn) and (y1, y2 ... ym), four random ordered
integers are generated in the interval [0, n] for
each parent genotype. Each genotype is then
cut into the five corresponding pieces, which
are shuffled together (one of them is reversed).
The genotypes of the progeny are obtained by
concatenating five of the pieces in the shuffled
set.

• Strategy 4: similar to the preceding one, but

only three random ordered integers are used to
divide the parent genotypes into four pieces,
which are then joined, shuffled, and used (four
at a time) to generate the genotypes of the
progeny.

The one-point crossing-over strategy 1 has the
property that the lengths of the parent genomes
are invariant under recombination in the progeny.
Since mutation also keeps the length of the
genome, only fusion and elision change it. In fact,
we did notice that fusion almost never leads to a
fitter genome, while elision sometimes does,
which means that the version of our genetic
algorithm described in the previous section, which
starts with a genome length copied from one of
the target pieces of music, leads to genome
lengths usually reduced by a little (not much)
from their initial value. Strategies 2, 3 and 4,
however, all lead to progeny genomes with

lengths usually quite different from those of their
parents (even when both parent genomes had the
same length), which provides the population with
a much larger genome length variety than strategy
1.

After performing several experiments we noticed
that, at the beginning of the evolution, the second
recombination strategy converges more quickly
towards the target, but after a certain number of
generations (usually between 150 and 200), the
first and fourth strategies becomes better, while
beyond about 500 generations after the beginning
of the process the first strategy is clearly the best.
Above 1000 generations, the first two strategies
tend to converge, i.e. to obtain similar distances to
the goal after the same number of generations.

This brought us to our fifth and sixth strategies,
which are simple combinations of the four
described above:

• In the first 150 to 200 generations, the

algorithm uses the second strategy (the two
point recombination procedure with four
different crossing-over points between both
parents). During all the remaining generations,
the first strategy is used instead (i.e., the one
point recombination procedure with a single
crossing-over point for both parents).

• In the first 200 generations, the program uses

the second strategy; between generations 200
and 500 it switches to the fourth strategy, and
above 500 generations it uses the first strategy.

The results of the combined strategies are much
better than those of any of the four strategies
applied separately, as shown in table 1. It can be
observed that the first mixed strategy reaches, in
just 600 generations, target distances similar to
those attained by the first two strategies in over
2500 generations. The improvement of the mixed
strategies is therefore quite impressive. On the
other way, the two mixed strategies attain
comparable results.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp53-58)

Nr. of generations Strategy 1 Strategy 2 Strategy 3 Strategy 4 First mixed strategy
1 0.930 0.930 0.930 0.930 0.930
100 0.782 0.766 0.807 0.791 0.766
200 0.734 0.710 0.756 0.744 0.697
300 0.714 0.692 0.740 0.712 0.676
400 0.702 0.692 0.722 0.704 0.659
500 0.690 0.689 0.722 0.704 0.648
600 0.681 0.683 0.716 0.704 0.643
1000 0.663 0.682
1500 0.658 0.666
2000 0.656 0.658
2500 0.644 0.652
Table 1. A comparison of the performance of five different recombination strategies.

Figure 2. Comparison between three different recombination strategies.

Figure 2 shows a graphical representation of the
results. Figure 3 shows the results of a different
experiment with the same three strategies.

In our analysis of the reasons for this behaviour,
we have come to the conclusion that, with the first
strategy, the population reaches a smaller genetic

variability, where favourable mutations have a
greater probability of appearing. On the other
hand, the second strategy generates a much
greater genetic variability, both with respect to
genome lengths and contents, where favourable
mutations are much harder to come by. This
means that, on the long range, the first strategy

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp53-58)

should work better than the second, which on the
other hand gets faster results during the first part
of the process, by evolving simultaneously in
many directions and testing widely different

genomes at the same time. Thus, the mixed
strategy makes the best use of both recombination
procedures, which is the reason for its outstanding
performance success.

Figure 3. Performance comparison of another experiment with the same recombination strategies.

4. Heavy-tail distributions and

automatic music generation

In a previous work on the automatic generation of
fractal curves with a given fractal dimension [12],
we proposed a procedure to make the genetic
algorithm which we were using, in a grammar
evolution context, increase its performance by
about one order of magnitude. This procedure
made use of the fact that the time needed to reach
the goal in that case is not a normal distribution,
but a heavy-tail one. Thus, a strategy based on
stopping the algorithm and reinitializing it, when
it has not reached an acceptable goal after a
certain number of generations, gives rise to very
good performance improvements.

With this procedure in view, we have analyzed the
situation for the case of the automatic generation
of music, but have come to the conclusion that,
although it is possible that the distributions may
still be heavy-tail, the performance improvement
reached by applying the re-initialization procedure
will be minimal, if any, because the minimum
number of generations to reach an acceptable goal
seems to be very large. This means that re-starting
the algorithm does not provide us with a better
chance of reaching an acceptable goal in a short
time.

5. Conclusions and future work

We have found that the normalized compression
distance is a promising tool to provide genetic
algorithms for automatic music generation with a

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp53-58)

measure of the distance to the desired target,
which may be used as an appropriate fitness
function. Some of the pieces of music generated
by this program have a significant similarity to the
style of well-known authors, in spite of the fact
that our fitness function ignores the duration of
the notes and takes into account only the relative
pitch envelope. Our results have been much better
than those we obtained previously with a different
procedure and fitness function [13].

In the future we intend to combine our results
with those of other authors [14-15], so as to use as
the target for the genetic algorithm, not just one or
two pieces of music by a given author, but a
cluster of pieces by the same author, in this way
trying to capture the style in a more general way.
We also intend to modify the algorithm to use the
information about note duration.

We shall also try to work with a more standard
and richer system of music representation, such as
MIDI.

References:

[1] J. McCormack (1996). Grammar-based music
composition. Complex International, Vol 3.

[2] J. Biles (1994). GenJam: A Genetic Algorithm
for Generating Jazz Solos, Proceedings of the
1994 International Computer Music Conference,
ICMA, pp. 131-137, San Francisco, 1994.

[3] E. Bilotta, P. Pantano, V. Talarico (2000).
Synthetic Harmonies: an approach to musical
semiosis by means of cellular automata,
Leonardo, MIT Press, vol. 35:2, pp. 153-159,
April 2002.

[4] D. Lidov, J. Gabura (1973). A melody writing
algorithm using a formal language model,
Computer Studies in the Humanities Vol. 4:3-4,
pp. 138-148, 1973.

[5] P. Laine, M. Kuuskankare (1994). Genetic
Algorithms in Musical Style oriented Generation,
Proceedings of the First IEEE Conference on

Evolutionary Computation, pp 858-862, Orlando,
Florida, vol. 2, 1994.

[6] D. Horowitz (1994). Generating Rhythms with
Genetic Algorithms, Proceedings of the ICMC

1994, pp. 142-143, International Computer Music
Association, Århus, 1994.

[7] B. Jacob (1995). Composing with Genetic
Algorithms, Proceedings of the 1995

International Computer Music Conference, pp.
452-455, ICMC, Banff Canada, 1995.

[8] M.Alfonseca, M.Cebrián, A.Ortega (2005).
Evolving computer-generated music by means of
the normalized compression distance, WSEAS
Transactions on Information Science and

Applications, Vol. 9:2, p.1367-1372, Sep. 2005.

[9] M. Li, X. Chen, X. Li, B. Ma and P. Vitányi
(2003). The similarity metric, Proc. 14th ACM-
SIAM Symposium on Discrete Algorithms, pp.
863-872.

[10] P. and M. Li (1993). An Introduction to
Kolmogorov Complexity and its Applications,
Springer-Verlag.

[11] R. Cilibrasi and P. Vitanyi (2005). Clustering
by Compression, IEEE Trans. Information

Theory, Vol.51 No.4, pp. 1523-1545.

[12] M.Cebrián, A.Ortega, M.Alfonseca (2004).
Acceleration of a procedure to generate fractal
curves of a given dimension through the
probabilistic analysis of execution time, in
Intelligent Engineering Systems Through Artificial

Neural Networks, Vol. 14, ed. C.H.Dagli,
A.L.Buczak, D.L.Enke, M.J.Embrechts, O.Ersoy,
pp. 265-270, ASME Press, New York, 2004.

[13] A.Ortega, R.Sánchez Alfonso, M.Alfonseca
(2002). Automatic Composition of Music by
means of Grammatical Evolution, APL Quote
Quad (ACM SIGAPL), Vol. 32:4, p. 148-155,
Jun. 2002.

 [14] M. Li and R. Sleep (2004). Melody
Classification using a Similarity Metric based on
Kolmogorov Complexity, Sound and Music

Computing.

[15] R. Cilibrasi and P. Vitanyi (2004).
Algorithmic Clustering of Music, Proc. Of the
Fourth Intl. Conf. on Web Delivering of Music

(WEDELMUSIC’04), pp. 49-67, IEEE Computer
Society, ISBN: 0.7695-2157-6.

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp53-58)

