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Abstract: This paper is devoted to the construction of a nonlinear interpolation in order to compute
adaptively derivatives from signal discrete data. Using these derivatives a multiresolution based on
Hermite interpolation is performed. The way in which the derivatives are approximated is crucial.
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1 Introduction

Harten’s multiresolution representation of
data is an useful tool for data compression.
Given a finite sequence fL, which represents
sampling of weighted-averages of a function
f(x) at the finest resolution level L, multire-
solution algorithms connect it with its multi-
scale representation

{f0, d1, d2, . . . , dL},

where the f0 corresponds to the sampling
at the coarsest resolution level and each se-
quence dk represents the intermediate details
which are necessary to recover fk from fk−1.

In [6] an efficient multiresolution frame-
work based on Hermite interpolation is pre-
sented. The function and derivative point-
values are used. In practice, we usually have
to approximate these derivatives. In [3], it is
presented an algorithm based on ENO (es-
sential non oscillatory) [4] interpolation in
order to approximate accurately the deriva-
tives of piecewise smooth functions. In [1] we
show that this approach is not good for noisy
signals and we present an algorithm based
on a fifth order generalization of the PPH
(piecewise polynomial harmonic) reconstruc-
tion [2]. This scheme is based in a modifica-
tion of Lagrange’s interpolations using har-
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monic means. The difference between the
classical arithmetic means that appear in La-
grange’s interpolation and the proposed har-
monic means are of order two. In order to
obtain the desired fifth order accuracy, we
consider new “phantoms” grid points. How-
ever, the use of these new points can present
numerical stability problems. Moreover, the
algorithm seems too technical. In the present
paper, we use a new class of means presented
in [5]. With these means we can obtain a
new adaptive algorithm with the desired ac-
curacy but without using any “phantoms”
grid point.

The paper is organized as follows: In sec-
tion 2 we briefly review the multiresolution
based on Hermite interpolation. In section 3
the new nonlinear interpolation is presented.

2 The Interpolatory Mul-
tiresolution Setting

Let us consider a set of nested grids:

Xk = {xk
j }Jk

j=0, xk
j = jhk, hk = 2−k/J0,

where Jk = 2kJ0, J0 some fixed integer. Con-
sider the point-value discretization

Dk :





C([0, 1]) → V k

f 7→ fk = (fk
j )Jk

j=0

(1)

where V k is the space of real sequences of
length Jk +1. A reconstruction procedure for
this discretization operator is any operator
Rk such that

Rk : V k → C([0, 1]); DkRkf
k = fk, (2)

which means that

(Rkf
k)(xk

j ) = fk
j = f(xk

j ). (3)

In other words, (Rkf
k)(x) is a continuous

function that interpolates the data fk on Xk.

2.1 Multiresolution based on Her-
mite interpolation

Warming and Beam [6] generalize the above
framework in order to incorporate the infor-
mation coming from the derivatives and to
use Hermite interpolation. We briefly review
this setting.

We define lower resolution grids xk =
{xk

j }Jk
j=0where k = 1, ..., L by dyadic coars-

ening: xk−1
j = xk

2j , j = 0, ..., Jk−1 = Jk
2

We suppose that the function f ∈ F and
its derivatives are given on the mesh Xm.
We define:

fk
j = f(xk

j ),

gk
j = hkf

′(xk
j ).

We have to decimate and predict the two
sets of data f and g. The direct mutiresolu-
tion algorithm, according to [6], is as follows:





Do k = 1, . . . , L

fk−1
j = fk

2j ,

gk−1
j = 2gk

2j ,

(df )k
j = fk

2j−1 − 1
2

(
fk
2j + fk

2j−2

)
+ 1

4

(
gk
2j − gk

2j−2

)
,

(dg)k
j = gk

2j−1 − 3
4

(
fk
2j − fk

2j−2

)
+ 1

4

(
gk
2j + gk

2j−2

)
.

(4)

3 Computing derivatives

As in most practical situations only function
point-values are given, we shall compute the
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approximate values at the nodes of the finest
grid Xm with the appropriate accuracy and
then apply the two algorithms of multiresolu-
tion. The way in which these approximations
are computed turns out to be crucial in terms
of accuracy and data compression.

Linear reconstruction techniques associ-
ated to large supports are affected by the
presence of singularities. We showed in [1]
that the option to obtain adaptation near sin-
gularities such as ENO schemes have prob-
lems in the presence of noise. In [1], in or-
der to obtain the desired fifth order accuracy
using a PPH-type reconstruction [2] and im-
prove the behavior of ENO schemes, we pro-
pose a “phantom” strategy. With this strat-
egy some numerical stability problems can
appear.

In the present paper, we present a new non-
linear reconstruction technique associated to
a stencil of five points. We expect that its
“locality” (with centered stencil) leads to im-
provements specially when noise is presented.
In this algorithm, it is not necessary the
“phantom” strategy and we have not numer-
ical stability problems.

3.1 The new non linear reconstruc-
tion technique

In this section we present a fifth order non
linear and data dependent interpolation tech-
nique, using similar ideas than in the PPH re-
construction but using a different mean: the
3-power mean [5]. Notice that the original
PPH reconstruction is based on the harmonic
(2-power) mean.

Let x, y be two real numbers with the same

sign. We define the p-power mean as

powerp(x, y) = min(x, y) ·
(
1 + |y − x

y + x
|+ · · ·+ |y − x

y + x
|p

)

The infinity series converge to (x + y)/2.
We will use two properties of these means:
a)

x + y

2
− powerp(x, y) = O(|x− y|p)

(related with the accuracy in smooth re-
gions).

b)

|powerp(x, y)| ≤ pmin(|x|, |y|)

(related with the adaptation to the singular-
ities).

Starting from the set of points
fj−2, fj−1, fj , fj+1, fj+2 and the polynomial

P (x) = a0+a1(x−xj)+a2(x−xj)2+a3(x−xj)3+a4(x−xj)4,

we have :

a1 =
fj−2 − 8fj−1 + 8fj+1 − fj+2

12h
.

Let us introduce the divided differences de-
fined by:

dj−r =
fj−r+1 − fj−r

h
; r = −1, 0, 1, 2

ej−r =
dj−r+1 − dj−r

h
; r = 0, 1, 2.

In this case, any “phantom” points appear.
Firstly, we assume that | ej |>| ej−2 |. This

indicates the presence of a possible singular-
ity at a point xd ∈ [xj , xj+2].

From

a1 =
−2 ej+ej−2

2 + 12 ej−1+ej−2

2 − 4ej−2

12
h+dj−1.
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We define the new modified value of a1 as

ã1 =
−2H(ej , ej−2) + 12H(ej−1, ej−2)− 4ej−2

12
h

+ dj−1,

where

H(x, y) =





power3(x, y) xy > 0

0 xy ≤ 0
(5)

In smooth regions, as soon as ej−1ej−2 > 0
and ejej−2 > 0, then a1 − ã1 = O(h4), since
the difference between the 3−power mean
and the original arithmetic mean is O(h3).
Then, the fifth order of accuracy for the orig-
inal signal.

On the other hand, in the presence of a
discontinuity xd ∈ [xj , xj+2], we have that
| ej |= O(1/h2) and || ej−2 |= O(1), but
since, |power3(x, y)| ≤ 3min(|x|, |y|), then ã1

remains O(1), obtaining the desired adapta-
tion.

Finally, we notice you that the modifica-
tions in the case of |ej | ≤ |ej−2| are similar
for the symmetry.

The nonlinearity appears in two steps.
Firstly, a selection procedure that using di-
vided differences marks points correspond-
ing to possible singularities. Secondly, for
these points a nonlinear interpolation is per-
formed introducing a modification of the La-
grange interpolation using p-power means.
With these means we obtain the desired ac-
curacy but without the “phantom” strat-
egy and without possible numerical stability
problems. Finally, the new algorithm seems
lees elaborate.
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