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Abstract: This paper is devoted to the construction of a nonlinear interpolation in order to compute
adaptively derivatives from signal discrete data. Using these derivatives a multiresolution based on
Hermite interpolation is performed. The way in which the derivatives are approximated is crucial.

Key Words: Multiresolution, Hermite interpolation, derivatives, nonlinear reconstructions.

1 Introduction

Harten’s multiresolution representation of
data is an useful tool for data compression.
Given a finite sequence f, which represents
sampling of weighted-averages of a function
f(z) at the finest resolution level L, multire-
solution algorithms connect it with its multi-
scale representation

{0, dt, a2, ... d"Y,

where the fY corresponds to the sampling
at the coarsest resolution level and each se-
quence d* represents the intermediate details
which are necessary to recover f* from f*=1.

In [6] an efficient multiresolution frame-
work based on Hermite interpolation is pre-
sented. The function and derivative point-
values are used. In practice, we usually have
to approximate these derivatives. In [3], it is
presented an algorithm based on ENO (es-
sential non oscillatory) [4] interpolation in
order to approximate accurately the deriva-
tives of piecewise smooth functions. In [1] we
show that this approach is not good for noisy
signals and we present an algorithm based
on a fifth order generalization of the PPH
(piecewise polynomial harmonic) reconstruc-
tion [2]. This scheme is based in a modifica-
tion of Lagrange’s interpolations using har-



monic means. The difference between the
classical arithmetic means that appear in La-
grange’s interpolation and the proposed har-
monic means are of order two. In order to
obtain the desired fifth order accuracy, we
consider new “phantoms” grid points. How-
ever, the use of these new points can present
numerical stability problems. Moreover, the
algorithm seems too technical. In the present
paper, we use a new class of means presented
in [5]. With these means we can obtain a
new adaptive algorithm with the desired ac-
curacy but without using any “phantoms”
grid point.

The paper is organized as follows: In sec-
tion 2 we briefly review the multiresolution
based on Hermite interpolation. In section 3
the new nonlinear interpolation is presented.

2 The Interpolatory Mul-
tiresolution Setting

Let us consider a set of nested grids:

T ak=ghe, he =27/,

where Jj, = 2F.Jy, Jo some fixed integer. Con-
sider the point-value discretization

C([O, 1]) —Vk
f = R = (7,

where V¥ is the space of real sequences of
length Ji + 1. A reconstruction procedure for
this discretization operator is any operator
Ry, such that

Ry, : V¥ — C([0,1));

(1)

DyRif* = f*, (2)

which means that

(R f*) () = f} = f(a}). (3)
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In other words, (Rpf*)(x) is a continuous
function that interpolates the data f* on X*.

2.1 Multiresolution based on Her-
mite interpolation

Warming and Beam [6] generalize the above
framework in order to incorporate the infor-
mation coming from the derivatives and to
use Hermite interpolation. We briefly review
this setting.

We define lower resolution grids 2% =
{:cé?}}-]iowhere k =1,...,L by dyadic coars-
ening: x?il = xéj, 7=0,..,Jp_1= %

We suppose that the function f € F and
its derivatives are given on the mesh X™.
We define:

£ = fah),
gF = hif'(a5).

We have to decimate and predict the two
sets of data f and g. The direct mutiresolu-
tion algorithm, according to [6], is as follows:

Do k=1,...,L
ffﬁl:fégja

k—
gj ! = 29]2617

(dg)g? = 9]2{:]'—1 -
(4)
3 Computing derivatives

As in most practical situations only function
point-values are given, we shall compute the

(df);? = fgj—l - ( kaj + fégj—2> + (953' - 9%—2) )

1 1
2 i
T = ) + 3 (dd + dbis).



approximate values at the nodes of the finest
grid X™ with the appropriate accuracy and
then apply the two algorithms of multiresolu-
tion. The way in which these approximations
are computed turns out to be crucial in terms
of accuracy and data compression.

Linear reconstruction techniques associ-
ated to large supports are affected by the
presence of singularities. We showed in [1]
that the option to obtain adaptation near sin-
gularities such as ENO schemes have prob-
lems in the presence of noise. In [1], in or-
der to obtain the desired fifth order accuracy
using a PPH-type reconstruction [2] and im-
prove the behavior of ENO schemes, we pro-
pose a “phantom” strategy. With this strat-
egy some numerical stability problems can
appear.

In the present paper, we present a new non-
linear reconstruction technique associated to
a stencil of five points. We expect that its
“locality” (with centered stencil) leads to im-
provements specially when noise is presented.
In this algorithm, it is not necessary the
“phantom” strategy and we have not numer-
ical stability problems.

3.1 The new non linear reconstruc-
tion technique

In this section we present a fifth order non
linear and data dependent interpolation tech-
nique, using similar ideas than in the PPH re-
construction but using a different mean: the
3-power mean [5]. Notice that the original
PPH reconstruction is based on the harmonic
(2-power) mean.

Let z, y be two real numbers with the same

sign. We define the p-power mean as

. y—x
powery(x,y) = min(z,y) - (1 + |y+73?‘ SR

The infinity series converge to (x + y)/2.
We will use two properties of these means:

a)

z+y
5 — powery(w,y) = O(jx —y|”)
(related with the accuracy in smooth re-
gions).
b)

[powery(x, y)| < pmin(|z, [y])

(related with the adaptation to the singular-
ities).

Starting the set of points
fj_g, fj—17 fj’ fj+1, fj+2 and the polynomial

from
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s’

P(x) = a0+a1(x—a:j)+a2(x—a:j)2—|—a3(:E—xj)3+a4(:n—:z:j)4,

we have :

_ Ji2 =81+ 8fj11 — fivo
12h ’

a

Let us introduce the divided differences de-
fined by:

fi—re1 — fjfr; .

di—, = A =-1,0,1,2
dj_pi1 —dj_
ejr %; r=0,1,2.

In this case, any “phantom” points appear.
Firstly, we assume that | e; |>| ej_2 |. This
indicates the presence of a possible singular-
ity at a point x4 € [, xj42].
From

—94FEm2 4 198%51F02 Yo,
12

ayp =

h—f—djfl.



We define the new modified value of a1 as

ax

12

+ dj_q,

where

powers(z,y) xy >0

H(z,y) ={ 0 (5)

zy <0

In smooth regions, as soon as e;_ie;_2 > 0
and ejej_o > 0, then a1 —ay = O(h*), since
the difference between the 3—power mean
and the original arithmetic mean is O(h?).
Then, the fifth order of accuracy for the orig-
inal signal.

On the other hand, in the presence of a
discontinuity zq € [xj,xj42], we have that
| ej |= O(1/h?) and || ej_a |= O(1), but
since, |powers(z,y)| < 3min(|z|, |y|), then a;
remains O(1), obtaining the desired adapta-
tion.

Finally, we notice you that the modifica-
tions in the case of |e;| < |ej_o| are similar
for the symmetry.

The nonlinearity appears in two steps.
Firstly, a selection procedure that using di-
vided differences marks points correspond-
ing to possible singularities. Secondly, for
these points a nonlinear interpolation is per-
formed introducing a modification of the La-
grange interpolation using p-power means.
With these means we obtain the desired ac-
curacy but without the “phantom” strat-
egy and without possible numerical stability
problems. Finally, the new algorithm seems
lees elaborate.

72H(€j, ej_g) -+ 12H(€j_1, ej_g) — 46j_2 h
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