
On the stability of a class of nonlinear

Interpolatory Wavelet-Packets schemes

S. AMAT, S. BUSQUIER, A. ESCUDERO, J. LACOMBE AND J. LIANDRAT
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1 Introduction

Multiresolution representations of data, such
as wavelet-packets decompositions, are a
powerful tool in several areas of application.
In such applications, one typically exploits
the ability of these representations to approx-
imate the input data with a high accuracy by
a very small set of coefficients.

The concept of wavelet-packets has been
introduced by Coifman et al. [7], [8], [9] as
a generalization of wavelet bases. It relies on
the definition of a library of bases. The best
base is chosen so as to minimize some given
entropy attached to the coefficients in each
base of the library. This idea can be made

precise as well as generalized to all multires-
olution with a tree structure. This flexibility
of choosing the decomposition of the signal is
well adapted for applications.

In practical applications, as we said before,
a discrete sequence sL

0 is encoded to produce
a multiscale representation of its information
contents, (s0

0, s
0
1, . . . , s

0
2L−1

); this representa-
tion is then processed and the end result of
this step is a modified multiscale representa-
tion (ŝ0

0, ŝ
0
1, . . . , ŝ

0
2L−1

) which is close to the
original one, i.e. such that (in some norm)

||ŝ0
i − s0

i || ≤ ε

After decoding the processed representation,
we obtain a discrete set ŝL

0 which is expected
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to be close to the original discrete set sL
0 . In

order for this to be true, some form of stabil-
ity is needed, i.e. we must require that

||ŝL
0 − sL

0 || ≤ Cε

where C is a positive constant.
In the last years, several ways to improve

the classical linear multiresolutions of wavelet
type have lead to nonlinear multiresolutions.
This nonlinear nature is a source of difficulty
for the proofs of convergence and stability.

The aim of this paper is to establish the
stability of a family of both linear and non-
linear wavelet-packets multiresolutions. We
obtain explicit error bounds.

The paper is organized as follows: In sec-
tion 2 we recall briefly the interpolatory mul-
tiresolution Harten’s framework. We intro-
duce the wavelet-paquets schemes in 3. In
section 4 we establish a contractivity prop-
erty and we give the stability.

2 Harten’s framework

The discrete multiresolution framework intro-
duced by Harten is based on two operators:
decimation and prediction.

Dk−1
k : V k → V k−1, (1)

P k
k−1 : V k−1 → V k. (2)

From a set of discrete data fk = (fk
i )Nk

i=1,
where k represents the discretization level,
the decimation operator Dk−1

k computes
fk−1 = (fk−1

i )Nk−1

i=1 , at the next coarser
discretization level (Nk−1 < Nk). The
prediction operator made an approximation
f̃k = (f̃k

i )Nk
i=1 to fk = (fk

i )Nk
i=1 from fk−1 =

(fk−1
i )Nk−1

i=1 .

The decimation operator is always assumed
to be linear. In contrast, the prediction oper-
ator need not be linear, should at least satisfy
the consistency requirement Dk−1

k · P k
k−1 =

INk−1
, where INk−1

denotes the identity op-
erator in RNk−1 . If a nonlinear operator is
considered as prediction we will obtain a non-
linear multiresolution. From the consistency
property, it follows that the null space of
Dk−1

k has dimension Nk−Nk−1, since the im-
age of Dk−1

k is the full RNk−1 . Then we can
decompose the prediction error according to

fk − f̃k =
Nk−Nk−1∑

i=1

dk−1
i ek−1

i (3)

where (ek−1
i )Nk−Nk−1

i=1 is a basis of Wk (space
of the details defined as the null space of the
prediction operator).

By iteration of this process from k = L to
k = 1, we obtain a multiscale decomposition
of fL into (f0, d0, d1, . . . , dL−1).

Let Gk be the operator which computes the
coordinates of the prediction error in a ba-
sis of N (Dk−1

k ), Ek such that ek = EkGke
k.

Then the direct and inverse transforms of the
multiresolution process take the form

vL → MvL (Encoding)




Do k = L, . . . , 1

vk−1 = Dk−1
k vk

dk = Gk(vk − P k
k−1v

k−1)

(4)

MvL = {v0, d1, . . . , dL}

MvL → M−1MvL (Decoding)
{

Do k = 1, . . . , L

vk = P k
k−1v

k−1 + Ekd
k

(5)
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On the other hand, in practice the pre-
diction operator (the decimation operator
also) is constructed by using two fundamen-
tal tools: discretization and reconstruction.
The discretizationDk is a linear operator that
connects a functional space F with the space
V k and yields discrete information at the res-
olution level k specified by a grid Xk. The
reconstruction operator Rk goes from V k to
F . A basic consistency requirement is that

DkRkf
k = fk (6)

Given sequences of discretization and re-
construction operators satisfying (6), it is
then possible to define the decimation and
prediction operators according to

Dk
k−1 = Dk−1Rk. (7)

P k−1
k = DkRk−1. (8)

Remark 1 If {Dk} is a nested sequence, that
is, if for all k and all f ∈ F

Dkf = 0 → Dk−1f = 0

the dependence of Dk
k−1 on the reconstruction

Rk is totally fictitious.

This description of the prediction operator
opens up a great number of possibilities in de-
signing subdivision schemes. The reconstruc-
tion process is the key step, and nonlinear
reconstructions operators will lead to nonlin-
ear subdivision schemes. The main concern
in this design should be the “quality” of the
prediction P k

k−1. The quality of the predic-
tion operator can be measured by the set
of functions for which the reconstruction is

exact. Thus nonlinear techniques appear as
good strategies.

We finalize the section with a brief descrip-
tion of the reconstruction process associated
to the point-values and cell-average frame-
works in [0, 1] (the details can be seen in [13]).

2.1 Point-value schemes in 1D

Let us consider a set of nested grids:

Xk = {xk
i }Jk

i=0, xk
i = ihk, hk = 2−k/J0,

where Jk = 2kJ0, J0 a fixed integer. Consider
the point-value discretization

Dk : C([0, 1]) → V k, fk
i = (Dkf)i := f(xk

i ),

where V k is the space of sequences of dimen-
sion Nk = Jk +1. A reconstruction procedure
for this discretization operator is given by an
operator Rk such that

Rk : V k → C([0, 1]); DkRkf
k = fk (9)

which means that

(Rkf
k)(xk

i ) = fk
i = f(xk

i ), (10)

therefore, (Rkf
k)(x) should be a continuous

function that interpolates the data fk on Xk.
Thus if we denote by Ik(x; fk) such an

interpolatory reconstruction of the data fk.
The predictor operator can be computed as
follows:

(P k
k−1f

k−1)i = Ik−1(xk
i ; f

k−1) (11)

A nonlinear interpolatory technique will
lead to a nonlinear multiresolution scheme
[11]-[13]-[1].
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3 Multiresolution packets

In this section we shall introduce the general
“Multiresolution packet”. The same as the
library of wavelet packet bases it is naturally
organized as subsets of binary tree. This seg-
mentation of signals into those dyadic inter-
vals is better adapted to the frequency con-
tent. The idea is to obtain the best decompo-
sition of all the possible ones. We now define
a cost function on sequence and search for its
minimum over all representation in a library.
For a given vector, their minima are the most
efficient representation.

Definition 1 A map L from sequences {xj}
to R is called an additive information cost
function if L(0) = 0 and L({xj}) =∑

j L(xj).

Some useful examples of information cost in-
clude: a)Number above a threshold, set an
arbitrary threshold ε and count the elements
in the sequence x whose absolute value ex-
ceeds ε. b) Concentration in lp norm (p <
2), L(x) = ||x||p. c) Entropy, L(x) =
−∑

j pjlogpj where pj = |xj |2
||x||2 and we set p

logp = 0 if p = 0. d) Logarithm of energy,
L(x) =

∑
j log|xj |2. For more details see [9].

Here we use the first possibility.
As the library is a tree, then we can find

the best representation by induction on the
number of scales. Denote by sk

j the represen-
tation of vectors corresponding to the scale k,
j = 0, 1, 2, . . . , 2L−k − 1, and by Bk

j the best
representation for x.

Whenever a parent node is of lower infor-
mation cost than the children, we mark the
parent. In the final representation we have
all the information, that is, the value of the
details and the marks.

In practice, we start with a vector of data
sL
0 = fk, corresponding to any discretiza-

tion of a certain function. We compute a
step of the multiresolution algorithm, that is,
sL−1
0 = fk−1 and the details sL−1

1 = dk. If
the addition of the cost of these two new vec-
tors are higher than it comes from sL

0 we do
not consider the decomposition. On the other
hand, if the cost is minor then we carry out
the decomposition. If the last case has been
produced then we would repeat the process
for these two new vectors (sL−1

0 and sL−1
1 )

independently. Anyhow, the decomposition
is finished when one has arrived to the worst
resolution level prescribed by the user. In the
framework of Harten, the one to one corre-
spondence between two discretization levels,
when L(Bk

j ) > L(sk−1
2j ) + L(sk−1

2j+1), is given
by

sk−1
j =





Dk−1
k (sk

j
2

) j even

GkQk(sk
j−1
2

) otherwise
(12)

sk
j = P k

k−1(s
k−1
2j ) + Ek(sk−1

2j+1) (13)

4 The contraction property
and the stability result

We focus on the subdivision scheme S asso-
ciated to the prediction that writes

fk−1 → S(fk−1)fk−1 = DkRk−1f
k−1,

with




(DkRk−1f
k−1)2j+1 = P k

k−1(x
k
j+ 1

2

),

(DkRk−1f
k−1)2j = fk−1

j .

(14)
We assume the following contractivity

property:
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Definition 2 We say that the subdivision
scheme S has a contractivity property if for
all k

||fk − gk||l∞(Z) ≤ ||fk−1 − gk−1||l∞(Z)

+ C||D(fk−1 − gk−1)||l∞(Z).

and

||D(fk − gk)||l∞(Z) ≤ ρ||D(fk−1 − gk−1)||l∞(Z).

where C is a positive constant, ρ ∈ (0, 1) and
D is a linear operator.

We have the following theorem related to
the stability of the reconstruction.

Theorem 1 Given {s0
0, s

0
1, . . . , s

0
2L−1} and

{s̄0
0, s̄

0
1, . . . , s̄

0
2L−1

} two decompositions, corre-
sponding to sL

0 , s̄L
0 ∈ l∞(Z) respectively, of a

multiresolution-packets scheme that verifies a
contractivity property, then we have

||sL
0 − s̄L

0 ||l∞(Z) ≤ (1 +
CC̃

1− ρ
)

L∑

k=1

||dk − d̄k||.

where C̃ is a bound of ||D||l∞(Z).

References

[1] S.Amat, F.Aràndiga, A.Cohen,
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