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Abstract: Multiresolution schemes within Harten’s framework corresponding to interpolatory
techniques are used for image compression. The numerical behavior of the error-control and

classical algorithms are compared. Compression properties are demonstrated on various tests.
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1 Introduction

Given fL a data where L stands for a reso-
lution level, a multiresolution representation
of fL is any sequence of type {f0, d1, . . . , dL}
where f j is an approximation of fL at reso-
lution j < L and dj+1 stands for the details
required to get f j+1 from f j . Linear mul-
tiresolution representations of data, like the
wavelet decompositions, are multiresolutions
involving inter-resolution linear operators.

The efficiency of linear multiresolution de-
compositions is generally limited by the pres-
ence of edges. The numerically significant co-
efficients dk

j are mainly those for which the

wavelet support is intersected by such discon-
tinuities.

In order to incorporate a specific adap-
tive treatment of singularities, the frame-
work of Harten’s multiresolution [11]-[12] has
been developed. The advantage of this gen-
eral framework lies in its flexibility, where
the reconstruction operator plays a funda-
mental part. This framework makes possi-
ble to consider data-dependent reconstruc-
tion techniques, which are needed to obtain
near to optimal data-denoising rates. Differ-
ent types of settings can be considered de-
pending on the linear discretization operator
that produces the data, we refer to [5]-[6]-
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[7] for more details. In this paper we con-
sider the point value setting, because it is in
this setting where the reconstructions are eas-
ily constructed. Using primitive functions we
can obtain the associated reconstructions for
other settings.

In the point-value framework, reconstruc-
tion means interpolation. Usually, the inter-
polation is performed data independent using
polynomials (interpolatory wavelets). One
option to obtain adaptation near singulari-
ties is to consider nonlinear (data dependent)
interpolation. Theoretically, using Essentia-
lly Non-Oscillatory (ENO) schemes [13]-[14],
we can obtain high order accuracy on all in-
tervals without any singularity. The ENO in-
terpolation uses piecewise polynomial recon-
structions based on a stencil selection pro-
cedure that moves away from the singulari-
ties. The numerical results, in image com-
pression, [3], reveal that these nonlinear re-
constructions strongly outperform the more
classical linear reconstructions in the case of
piecewise smooth geometric images, but that
they do not bring improvements for real im-
ages which contain additional texture.

Other the nonlinear multiresolution trans-
form results from considering Piecewise Poly-
nomial Harmonic (PPH) reconstruction tech-
niques. Its “locality” (with centered stencil)
leads to improvements specially when texture
is present [4].

The stability analysis for linear prediction
processes can be carried out using tools com-
ing from wavelet theory, subdivision schemes
and functional analysis (see [12], [6]), however
none of these techniques is applicable in gen-
eral when the prediction process is nonlinear.

In the nonlinear case, stability can be en-
sured by modifying the encoding algorithm.

The idea of a modified-encoding to deal with
nonlinear multiresolution schemes is due to
Harten; one dimensional algorithms in several
settings can be found in [11], [7], [5]. The goal
of a modified-encoding procedure is to keep
track of the accumulation error in processing
the values in the multi-scale representation.

The aim of this paper is to analyze the
compression properties of these error-control
algorithms in comparison with the classical
ones.

The paper is organized as follows: We
recall in section 2 the discrete pointvalue
framework for multiresolution introduced by
Harten [12]. In next section, we review the 2-
D interpolatory error-control algorithms. Fi-
nally, we present some numerical results in
section 4.

2 The Interpolatory Mul-
tiresolution Setting

Let us consider a set of nested grids in [0, 1]:

Xk = {xk
j }Jk

j=0, xk
j = jhk, hk = 2−k/J0,

where Jk = 2kJ0, J0 some fixed integer. The
point-value discretization

Dk :





C([0, 1]) → V k

f 7→ fk = (fk
j )Jk

j=0 = (f(xk
j ))

Jk
j=0

(1)
where V k is the space of real sequences of
length Jk +1. A reconstruction procedure for
this discretization operator is any operator
Rk such that

Rk : V k → C([0, 1]); satisfying DkRkf
k = fk,
(2)
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which means that

(Rkf
k)(xk

j ) = fk
j = f(xk

j ). (3)

In other words, (Rkf
k)(x) is a continuous

function that interpolates the data fk on Xk.
The most usual interpolatory techniques

are polynomials. We can consider linear re-
construction techniques as data independent
Lagrange interpolation but also data depen-
dent interpolation as ENO reconstruction [5]
and even full nonlinear reconstruction tech-
nique as the PPH reconstruction [4]. ENO
and PPH schemes are designe to obtain good
resolution near the edges of the image where
linear schemes lose accuracy.

3 Multiresolution-based
compression schemes with
error-control

Multiresolution representations lead natu-
rally to data-compression algorithms. The
simplest data compression procedure is ob-
tained by setting to zero all scale coefficients
which fall below a prescribed tolerance. Let
us denote

(êk)i,j = tr(ek
i,j ; εk) =





0 |ek
i,j | ≤ εk

ek
i,j otherwise

(4)
and refer to this operation as truncation.
This type of data compression is used pri-
marily to reduce the “dimensionality” of the
data. A different strategy, which is used to
reduce the digital representation of the data
is ”quantization”, which can be modelled by

(êk)i,j = qu(ek
i,j ; εk) = 2εk · round

[
ek
i,j

2εk

]
,

(5)

where round [·] denotes the integer obtained
by rounding. For example, if |ek

i,j | ≤ 256 and
εk = 4 then we can represent ek

i,j by an in-
teger which is not larger than 32 and com-
mit a maximal error of 4. Observe that if
|ek

i,j | < εk ⇒ qu(ek
i,j ; εk) = 0 and that in

both cases

|ek
i,j − êk

i,j | ≤ εk. (6)

By applying the inverse multiresolution
transform to the compressed representation,
we obtain f̂L = M−1{f̄0, ê1, . . . , êL}, an ap-
proximation to the original signal f̄L. We
expect the information contents of f̂L to be
very close to those of the original signal f̄L,
and in order for this to be true, the stability
of the multiresolution scheme with respect to
perturbations is essential. Studying the ef-
fect of using êk

i,j instead of ek
i,j in the input

of M−1 is equivalent to studying the effect of
a perturbation in the scale coefficients in the
outcome of the inverse multiresolution trans-
form.

Given a discrete sequence f̄L and a toler-
ance level ε for accuracy, our task is to come
up with a compressed representation

{f̄0, ê1, . . . , êL} (7)

such that if f̂L = M−1{f̄0, ê1, . . . , êL}, we
have

‖ f̄L − f̂L ‖≤ Cε (8)

for an appropriate norm.
As observed by Harten [11], one possible

way to accomplish this goal is to modify the
encoding procedure in such a way that the
modification allows us to keep track of the
cumulative error and truncate accordingly.

In what follows we use a two-dimensional
extension of the one dimensional algorithms
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in [11], [5] and the two dimensional tensor
product in [2]. Given a tolerance level ε, the
outcome of the modified encoding procedure
is a compressed representation (7) satisfying
(8). This enables us to specify the desired
level of accuracy in the decompressed signal.
A modified encoding procedure is designed
keeping in mind the particular decoding pro-
cedure to be used.

We will consider truncation, but the algo-
rithms are identical for another compression
process.

For more details see [1].

4 Comparison of the com-
pression properties

In this section we perform a comparative
study using the PSNR (Peak Signal Noise Ra-
tio) quality image indicator [16]. We recall
that for an 8 bit image (0− 255),

PSNR = 20 log10 (
255

||fL − f̂L||l2
)

We consider the photo 1.
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Figure 1: ‘ Cameraman, 257× 257 ’

We consider the separable case. In tables
1, 2 and 3, we consider Lagrange, ENO and
PPH multiresolutions respectively. We com-
pare the compression capabilities of error-

control and classical algorithms. We can ob-
serve that for a given level of quality the com-
pression attained by error-control schemes is
higher than the classical ones. Moreover, the
ENO results with E-C improve the result us-
ing the linear Lagrange reconstruction.

PSNR Lagrange Lagrange (E-C)
30 9101 6285
35 13918 11386
40 20386 16878
45 31213 24909

Table 1: Number non-zero details, L = 4,
separable, Lagrange

PSNR ENO ENO (E-C)
30 12272 5593
35 19002 10455
40 38875 15934
45 49891 24180

Table 2: Number non-zero details, L = 4,
separable, ENO

PSNR PPH PPH (E-C)
30 7068 5215
35 12117 9768
40 18435 15386
45 31739 23655

Table 3: Number non-zero details, L = 4,
separable, PPH
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