
Detection, measurement and classification of

discontinuities

S. AMAT, S. BUSQUIER AND M.A. GÓMEZ
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1 Introduction

The problem of detection, classification and
measurement of discontinuities appears in
many applications in science and technology.
Some of these processes produce piecewise
smooth data, that is functions with a small
number of discontinuities compared to the
number of sampled data. Assume that the in-
put function is corrupted by an additive ran-
dom noise f̂ = f +n, we would like to find the
discontinuities of the signal f . The noise dis-
turbs the data thus the problem is complex.
It is difficult to distinguish the true disconti-
nuities from the function and the false discon-
tinuities from the noise. The noise added to
the signal appears as small oscillatory devia-
tions from the curve. A non-linear detector
algorithm is presented. The main advantage

of our algorithm is that we can consider noise
larger than the classic methods.

A function has a discontinuity of degree k
at a point, if the k th-order left and right
derivatives at that point are different. Dis-
continuities are classified by their degrees and
measured by their sizes, that is, the difference
of the derivatives.

In [3], divided differences were studied to
obtain the possible discontinuities. Our de-
tection algorithm is based on this study which
uses the subcell resolution technique intro-
duced by Harten [1]. However, when we con-
sider signals corrupted by noise, we have to
modify the detecting mechanisms, since the
algorithm should be adapted to the intro-
duced noise. Our new algorithm detects true
singularities only and not singularities intro-
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duced by the noise. In the examples we will
see that it is possible to consider noise of very
large size.

Now we will recall the subcell resolution
technique.

2 The Subcell Resolution
Technique.

Let us assume that H(x) is a continuous func-
tion with a corner at xd ∈ (xj−1, xj). Then,
the ENO polynomials [1] satisfy

H(x) = qj−1(x) + O(hr), x ∈ [xj−2, xj−1]
(1)

H(x) = qj+1(x) + O(hr), x ∈ [xj , xj+1] (2)

The location of the corner, xd, can be re-
covered using the following function:

Gj(x) = qj+1(x)− qj−1(x) (3)

Using Taylor expansion in regions of
smoothness, it is not hard to prove that

Gj(xj−1)×Gj(xj) = a(a−1)[H
′
]2xd

h2+O(h3)

where xd = xj − ah, 0 < a < 1 and [H
′
]xd

denotes the jump of the derivative at xd.
Therefore, if h is sufficiently small, there

is a root of Gj in (xj−1, xj) be such that
Gj(θj) = 0. In general, it can be proven [1]
that

|θj − xd| = O(hr)

Remark 2.1 If the function is a piecewise
polynomial with a corner in xd then xd = θj.

Working with cell-average and hat-average,
via first and second primitive (see [2] and

[3]), we can detect jumps and delta singular-
ities. With these multiresolutions we can de-
tect “weaker” singularities also, that is, with
the cell-average we can detect corners and
with the hat-average we can detect corners
and jumps. In these cases it becomes very
important to isolate cells that are suspected
of harboring a singularity.

On the other hand, we know that when
H(x) has a discontinuity in its m+1st deriva-
tive at xd ∈ (xj−1, xj), it can be approxi-
mated (for sufficiently small h) by the unique
root of G

(m)
j (z) = q

(m)
j+1(z) − q

(m)
j−1(z) = 0.

Thus, if (xj−1, xj) is suspected of contain-
ing a singularity (stencil selection, see [3]),
we check whether

G
(m)
j (xj−1) ·G(m)

j (xj) < 0. (4)

If this is the case, we conclude that there is a
root of G

(m)
j (z) in (xj−1, xj).

A careful analysis of the functions G
(m)
j (x)

for m = 0, 1, 2 can help to determine whether
or not a singularity lies at a suspicious grid
point.

Since we are interesting in jumps and cor-
ners we will consider the cell-average frame-
work.

2.1 Full detection mechanism

As we said before, we will work with signals
perturbed with noise for which we will assume
some conditions. For our algorithm we will
need to know some bound ε of the introduced
noise. The knowing of noise bounds is not
a big restriction. In the classic detectors, it
is supposed that the noise is modelled by a
gaussian of which we know the mean µ and
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the variance σ. With this information we can
find bounds since Pr(f ∈ [µ− 2σ, µ + 2σ]) =
0.95.

When we don’t have any information of the
noise (for example picture from an airplane
with a lot of fog), we can generate a decreas-
ing succession of parameters εk in order to
obtain the possible discontinuities. We keep
the discontinuities obtained in a such εk0 if
the next parameter εk0+1 knowledge the de-
tection mechanism getting a number limitless
of discontinuities.

xd ∈ (xj−1, xj)

z Gj(z) G′
j(z)

xj−1 (a− 1)h[H ′]xd
[H ′]xd

xj ah[H ′]xd
[H ′]xd

xj+1 (a + 1)h[H ′]xd
[H ′]xd

Table 1: Jump in f(x) ([H ′]xd
6= 0).

xd = xj

z Gj(z) G′
j(z)

xj−1 −h[H ′]xd
[H ′]xd

xj O(hp+2) [H ′]xd

xj+1 h[H ′]xd
[H ′]xd

Table 2: Jump in f(x) ([H ′]xd
6= 0).

Tables 1, 2, 3 and 4 (which are constructed
via Taylor expansions) reflect the behavior of
the functions G(m) near the different types of
singularities (see [3] for more details). When
we are considering signals perturbed with

xd ∈ (xj−1, xj)

z G′
j(z) G′′

j (z)

xj−1 (a− 1)h[H ′′]xd
[H ′′]xd

xj ah[H ′′]xd
[H ′′]xd

xj+1 (a + 1)h[H ′′]xd
[H ′′]xd

Table 3: Corner in f(x) ([H ′′]xd
6= 0).

xd = xj

z G′
j(z) G′′

j (z)

xj−1 −h[H ′′]xd
[H ′′]xd

xj O(hp+1) [H ′′]xd

xj+1 h[H ′′]xd
[H ′′]xd

Table 4: Corner in f(x) ([H ′′]xd
6= 0).
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noise, the problem is more difficult. The idea
is to study how this noise affects the divided
differences. Notice you for example that if
||fi − f̂i|| < ε then for the divided differences
of order 4 we have ||H[i; 4]− Ĥ[i; 4]|| < 8

6
ε

h3 .
Our strategy to detect singularities is based

on modifications of tables 1, 2, 3 and 4 regard-
ing the presence of noise.

Remark 2.2 We only need a vector of data
not the complete function.

2.2 Numerical experiments and
Conclusions

In this section we will introduce some plots
of modified signals and pictures by random
noise. Our algorithm detects the real sin-
gularities with a great noise. Our scheme
detects only true discontinuities. When the
noise used is too big (for which the true
discontinuities and those taken place by the
noise have the same characteristics) our algo-
rithm doesn’t detect anything. Nevertheless,
we can see in our examples that we can con-
sider very large noises, more than the classical
detectors.

In our experiments we use the idea of de-
creasing sequence to detect the discontinu-
ities. After we check the measure of discon-
tinuity and we decide the true singularities if
the size is big enough with respect the noise.
As we said before, we will consider the cell-
average framework.

We start in 1-D with a jump and a corner.
In figure 1, we plot the signals and in figure 2,
the perturbation. We use 64 points, and the
noise is lees than 0.4 and 0.01 respectively. In
table 5 we can see the good resolution of the
detector.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

, 0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 1: left jump, right corner
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Figure 2: left jump with noise, right corner
with noise

fig.2 left fig.2 right fig.3 left fig.3 right
cell (35, 36) (35, 36) (35, 36) (35, 36)

location 0.547 0.547 0.499 0.510
size 1. 1. 1. 1.1
type jump corner jump corner

Table 5: n = 64, cell-average

Next, we apply our detector to images in 2-
D. In figure 3, we consider a geometric picture
without noise, and in figure 4 a perturbation
of 3 with a noise lees than 10 is considered.
We detect all the jumps, in table 6 we dis-
play their sizes (the real sizes are 50 in all the
cases).

Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Robotics and Automation, Madrid, Spain, February 15-17, 2006 (pp6-10)



50 100 150 200 250

50

100

150

200

250

Figure 3: noise=0
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Figure 4: section with noise

first jump second jump third jump
65 60 50

fourth jump fifth jump sixth jump
55 65 65

Table 6: n = 256, cell-average, noise=10
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