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Abstract: - This paper presents preliminary work on the location of controllers in wireless communication 
networks using hybrid heuristics. We propose a model in which N base stations out of the total M of the network 
must be selected as controllers. The primary design objective is that the distance between all base stations and 
the N controllers is minimized. There is also a constraint of capacity, which prevents a controller to manage an 
unlimited number of base stations. We have implemented and tested a greedy-simulated annealing algorithm to 
solve the problem, comparing its results with that of a lower bound for the problem. 
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1   Introduction 
 
Mobile communication networks are usually divided 
into hexagonal cells, each corresponding to a 
different cover zone, and associated to a given Base 
Station (BTS). A certain number of cells can be 
chosen to install controllers, which route calls to 
another base station or to a public switched telephone 
network. 
 
The design of mobile networks often involves 
problems of location of devices (BTS, multiplexers, 
switches etc.) [1], [2].  A  problem widely tackled in 
this context is the assignment of BTSs to switches 
(controllers) [3], in which it is considered that both 
the BTSs and controllers of the network are already 
positioned, and its objective is to assign each BTSs to 
a controller, in such a way that a capacity constraint 
have to be fulfilled. The objective function in this 
case is then formed by two terms: the sum of the 
distances from the BTSs to the switches must be 
minimum, and also there is another term related to 
handovers between cells assigned to different 
switches which must be minimized (see [3] for 
details). 
 
Hybrid algorithms have been applied to solve the 
BTS-controler assignment problem [4], [10]. Both 
papers deal with the same problem, discussing 
different approaches to it, based on mixing genetic 
algorithms (GA), Tabu Search (TS) and Simulated 
Annealing (SA). SA have also been also used in the 
design of the BTS-Switch structure of a mobile 
communication network. In [1], a SA algorithm with 
a pricing mechanisms is used to tackle the assignment 

of cells to controllers problem. The results obtained 
are compared with a lower bound for the problem, 
and the authors show that their approach is able to 
obtain solutions very close to the problem's lower 
bound. Note that the works carried out on the 
assignment of BTSs to controllers, consider that the 
position of controllers is given in advance. In this 
paper we propose a model for the optimal location of 
controllers in a mobile communication network, so it 
is a previous step to the BTS-controllers assignment 
problem.  
 
Our model starts from the premise that the switches 
must be located in existing BTSs, in order to use their 
infrastructure, and save costs. We propose then a 
model to establish which ones are the optimal BTSs 
for allocating a given number N of switches. This 
model is based on the so-called Terminal Assignment 
Problem (TA) [7], which looks for assignments of 
BTS to controllers such that the distance between all 
base stations and the N controllers is minimized. 
 
We propose a hybrid heuristic for solving the 
Optimal Location of Controllers Problem (OLCP 
hereafter), based on SA and on an existing local 
search greedy algorithm for the TA. We test our 
approach in several switch location problems, with 
different number of BTSs and switches available, and 
compare the results obtained with that of a lower 
bound for the OCLP. 
 
The rest of the paper is structured as follows: next 
section defines the OCLP in a mobile 
communications network. In this section we also 
introduce the model we propose based on the TA. In 
Section 2 we present the hybrid Greedy-SA algorithm 
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for solving the OCLP. In Section 3 we test the 
proposed algorithms by means of several 
computational experiments, where the performance 
of the hybrid heuristic approach is studied and 
compared with a lower bound for the OCLP. Finally, 
Section  4 concludes the paper giving some remarks. 
 
2 Problem Formulation 
 
Let us consider a mobile communications network 
formed by M nodes (BTSs), where a set of N 
controllers must be positioning in order to manage 
the network traffic. It is always fulfilled that N<M, 
and in the majority of cases N << M. We start from 
the premise that the existing BTSs infrastructure must 
be used to locate the switches, since it saves costs. 
Thus, the OCLP consists of selecting N nodes out of 
the M which form the network, in order to locate in 
them N controllers. To define an objective function 
for the OCLP, we introduce a model for the problem, 
based on a well known problem, the Terminal 
Assignment Problem. 
 
2.1 The Terminal Assignment Problem 
 
The TA can be defined as follows. 
Given a set of: 

 
Terminals: l1,l2, …,lM-N, 
Weights: w1,w2,…,wM-N, 
Concentrators: r1,r2,…,rN, 
Capacities: p1,p2,…,pN, 
 
where wi is the weight, or capacity requirement of 
terminal li (Note that we consider N concentrators and  
M-N terminals in our network). The weights and 
capacities are positive integers and 
wi<min{p1,p2,…,pM-N} for i=1, 2,…,M-N. The M-N 
terminals and N concentrators are placed on the 
Euclidean grid, i.e. li has coordinates (li1,li2) and rj is 
located at (rj1,rj2). The following definition for the 
TA, can be found in [7]: 
Let { }NMxxxx −= ˆ,,ˆ,ˆˆ 21 Κ  be a vector such that 

jxi =ˆ  means that terminal i has been assigned to 
concentrator j, with x̂  an integer such that 

Nx ≤≤ ˆ1 . 
 
Find x̂  which minimize 

∑
−

=

=
NM

i
ijtxZ

1

cos)ˆ( , j=1,2,…,N.                               (1) 

 
 

subject to: 

∑
∈

<
jRi

ji pw j=1,2,…,N                                          (2) 

where costij is the cost for assigning terminal i to 
concentrator j (usually, the Euclidean distance 
between the terminal and its corresponding 
concentrator), and { }jxiR ij == ˆ|  .e., Rj represents 
the set of terminals that are assigned to concentrator j. 
It is important to note that in the standard definition 
of the TA, there is a major objective (the 
minimization of the distances between terminals and 
concentrators), and a major constraint (the capacity 
constraint of concentrators).  
 
2.2 The Optimal Controller Location Problem 
 
The complete OCLP consist of selecting N 
controllers out of M nodes, in such a way that the 
objective function given by solving the corresponding 
TA with N concentrators and M-N terminals is 
minimal. Note that we have to solve two problems, 
first, the selection of the N controllers, second for 
each election, an associated TA. This process can be 
seen in Figure 1. 
 
 
 

 
 

Figure 1. Structure of the Optimal Controller Location Problem. 
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3 A hybrid Greedy-SA algorithm for 

solving the OCLP 
 
3.2  The simulated annealing algorithm 
 
SA has been widely applied to solve combinatorial 
optimization problems [8], [9]. It is inspired by the 
physical process of heating a substance and then 
cooling it slowly, until a strong crystalline structure is 
obtained. This process is simulated by lowering an 
initial temperature by slow stages until the system 
reaches to an equilibrium point, and no more changes 
happen. Each stage of the process consists in 
changing the configuration several times, until a 
thermal equilibrium is reached, and a new stage 
starts, with a lower temperature. The solution of the 
problem is the configuration obtained in the last 
stage. In the standard SA, the changes in the 
configuration are performed in the following way: A 
new configuration is built by a random displacement 
of the current one. If the new configuration is better, 
then it replaces the current one, and if not, it may 
replace the current one probabilistically. This 
probability of replacement is high in the beginning of 
the algorithm, and decreases in every stage. This 
procedure allows the system to move toward the best 
configuration. Although SA is not guaranteed to find 
the global optima, it is still better than others 
algorithms in escaping from local optima.  
 
In this paper we consider that configurations in the 
SA are sets of N nodes which will be evaluated as 
controllers for the network. The encoding of the 
configurations is by means of binary strings, in such a 
way that a 1 in the binary string means that the 
corresponding node has been selected to be a 
controller, whereas a 0 in the binary string means that 
the corresponding node is not a controller, but serve 
as BTS. Due to we must select N nodes to be the 
controllers of the network, our SA searches for binary 
strings with exactly N 1s on them. Standard SA 
cannot manage the constraint of fixed number of 1s, 
and an extra operator has to be added to the standard 
SA, in the following way: after the application of the 
mutation in the SA, the individual x  will have p 1s 
that, in general, will be different from the desired 
number of desired 1s in x , N. If p<N the restricted 
search operator adds (N-p) 1s in random positions, 
and if p>N, the restricted search operator randomly 
selects (p-N) 1s and removes them from the binary 
string. With this procedure we ensure that all the 

binary strings managed by the SA has exactly N 1s, 
representing N controllers. This procedure is called 
restricted search. 
 

 
 

Figure 2. Pseudo-code of the standard SA 
 

Figure 2 shows the pseudo-code of the standard SA 
implemented. The state s(T) stands for the binary 
string with N 1s, and the mutated state smut(T) stands 
for a binary string after the application of a flip 
mutation operator and the restricted search operator. 
The variables Max_temp_changes and 
Max_mutations stand for the maximum temperature 
changes and maximum number of mutations in each 
temperature, respectively. The initial temperature of 
the system T0  is chosen in such a way that the initial 
probability of acceptance worse solutions is 0.8, a 
standard value for the SA. Note that this probability 
will decrease with the temperature of the system. The 
states s(T) and smut(T) will be better or worse than the 
other on the basis of an objective function, which in 
this case is obtained solving a TA, i.e. we consider 
equation (1) as the objective function to the OCLP. 
We use a Greedy algorithm to obtain this objective 
function. 
 
3.3  The Greedy Algorithm 
 
 One of the most important papers on TA was the 
approach by Abuali et al. [7]. In this article the 
authors proposed a Greedy algorithm for solving the 
TA. This greedy approach uses the notation given in 
Section 2, and starts from a random permutation of 
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terminals )( NMl −π . Then, the cost function costij is 
the Euclidean distance between terminal i and 
concentrator j. The terminals are assigned to 
concentrators following the order in )( NMl −π , in 
such a way that a terminal is allocated to the closest 
concentrator if there is enough capacity to satisfy the 
requirement of the particular terminal. If the 
concentrator cannot handle the terminal, the 
algorithm searches for the next closest concentrator 
and performed the same evaluation. This process is 
repeated until an available concentrator is found, and 
the algorithm is continued to assign the remaining 
terminals, if there are any. In the case that no 
concentrator can accommodate the required capacity 
of a given terminal, the search is considered failed, 
and the solution provided by the greedy algorithm is 
not feasible. 
 

 
 
  
 
 
4 Experiments and results 
 
In order to test our approach, we have tackled several 
OCLP instances of different difficulty. Table 1 shows 
the main characteristics of the instances. There are 6 
OCLP instances, with different values for N and M. 
We have small size networks (Instances 1 and 2), 
medium size networks (3 and 4) and large size 
networks (5 and 6). Instances 1, 2 and 3 have been 
randomly generated in a 100x100 grid, and Instances 
4, 5 and 6 have been generated over a 200x200 grid. 
The capacities of all the nodes have been randomly 
generated between 17 and 22, and the weight of the 
nodes have also been randomly generated between 1 
and 5. It is expected that the difficulty of the 

instances increases with the number of nodes in each 
instance. 

 
Table 1. Main characteristics of the problems tackled. 
 

Problem # Nodes  
(M) 

Controllers 
(N) 

Grid 

1 13 3 100x100 
2 20 4 100x100 
3 40 6 100x100 
4 60 8 100x100 
5 80 10 200x200 
6 100 12 200x200 

 
In order to obtain a comparison algorithm for 
assessing the performance of our approach in the 
OCLP, we consider the following Lower Bound (LB) 
for the TA, which have been defined in [4]: 
 

∑
−

=

=
NM

i
ikk

dLB
1

)(min                                               (3) 

 
Note that this Lower Bound comes from the solution 
obtained by assigning each node i to the nearest 
controller k. Since it is a LB for the TA, the resulting 
algorithm for comparison is formed by the standard 
GA with the restricted research described in Section 
3, hybridized with this LB instead of the greedy 
algorithm. It is important to see that this LB is 
equivalent to have controllers with infinite capacity, 
in such a way that they can handle any number of 
nodes. This LB provides then the best possible 
assignment if no capacity constraint is considered. 
 
 
Table 2. Results obtained in the OCLP instances tackled. 
 

problem SA-greedy 
(50000) 

SA-greedy 
(30000) 

SA-greedy 
(15000) 

LB-greedy 

 
1 

 
185.4 

 
185.4 

 
185.4 

 
185.4 
 

 
2 

 
357.0 

 
357.0 

 
357.0 

 
357.0 
 

 
3 

 
492.8 
 

 
496.3 

 
499.8 

 
462.6 

 
4 

 
1476.4 
 

 
1489.3 

 
1491.8 

 
1385.0 

 
5 

 
1767.6 
 

 
1796.1 

 
1829.2 

 
1573.5 

 
6 

 
2132.7 
 

 
2184.6 

 
2196.3 

 
1940.7 

Greedy Heuristic used 
 
For the binary string x of the SA:  
Select the N 1s to be concentrators. 
Select the M-N 0s to be terminals.  
Choose a permutation )( NMl −π at random. 

For (each terminal )( ilπ ): 

Determine costij=dij (distance from )( ilπ  to the 
closest feasible concentrator rj). 
Assign )( ilπ  to rj. 
Calculate Z(x)=Σcostij  
Endfor 
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Figure 2. Distribution of nodes and optimal solution for the 

problem #1. 
 
 
 
Figure 2 shows the distribution of nodes and the 
optimal solution for the problem #1. This can be 
considered an easy instance, with only 13 nodes and 
3 controllers to install. The LB for this problem is 
very close to the optimal solution obtained by the SA-
Greedy algorithm, as can be seen in Table 2.  
 
Figure 3 shows the best solution found by the SA-
Greedy algorithm compared with the solution of the 
LB-Greedy. Note that both algorithms choose the 
same set of nodes to be controllers, in spire of the 
LB-Greedy provides the solution without capacity 
constraint. The final assignment provided by the TA 
is different due to that constraint, but the differences 
are small. 

 
 
Figure 3. Solution for the problem #5 (a) solution given by 

the SA-Greedy algorithm, (b) solution of the LB-GA. 
 

5 Conclusions 
 
In this paper we have presented preliminary work 
carried out on the Optimal Controller Location 
Problem, which arises in the process of designing 
cellular mobile networks. We have introduced a 
hybrid algorithm consisting of a Simulated 
Annealing, and a Greedy algorithm which provides 
the objective function. We have tested our hybrid 
approach in several OCLP instances of different 
difficulty, comparing the results obtained with that of 
a lower bound for the problem. 
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