# **Design and Implementation of a National Data Warehouse**

Carlo DELL'AQUILA, Ezio LEFONS, and Filippo TANGORRA Dipartimento di Informatica Università di Bari via Orabona 4, 70126 Bari ITALY

*Abstract:* - The Information Technology is an essential support in the decisional process to improve manager' phenomena knowledge, that is often approximate and ill-structured. Tools underlying decision support systems (as OLAP systems, data mining, and data warehouses) have a central role in enterprise information systems. In this paper, we present the design and the implementation of a national data warehouse.

Key Words: - Data marts, data warehouses, train booking, railway transportation analysis.

# **1** Introduction

In last years, there has been an explosive growth in the use of data warehousing technology in order to construct successful decision support infrastructures [2, 4, 11, 12]. For many years, the quest for competitive advantages has prompted many organizations to attempt the paradigm to shift from data processing to the new exciting arena of information analysis. Increasing successful implementations, more robust and functional extraction software, improving price-to-performance equipment ratios, and improved training for IT staff are surely data warehousing growth motivators.

Data warehouse (DW) is a sophisticated system that gives benefits only to organizations with a high degree of IT maturity. An organization embracing data warehousing prematurely, *i.e.*, while it is still working to meet its operational information needs, can easily meet obstacles. Poor support from the management staff, in a lot of cases unable to appreciate the need of data warehousing, or insufficient resources and funds owing to pressing needs for operational systems could be pitfalls. Moreover, user expectations could not be met due to immature operational systems and insufficient resources, unable to allow the development of satisfactory ETL processes.


Once the warehouse is built, it has to be maintained and tuned [13]. In fact, because of the heterogeneity of sources, data coming into the warehouse can change their form in time. Likewise, user's needs can change in time. In addition, historical data inevitably grow in time. For these all, a warehouse needs constant tuning.

Here, we present some guidelines and principles both in the design and the implementation of the data warehouse used to accomplish our national railway transportation analyses. The study has been conducted throughout TeleSistemi Ferroviari (*TSF*), an Italian IT solutions provider. The overall architecture of the data warehouse is briefly presented in Section 2. In Section 3, two typical warehouse schemas - namely, the Star schema and the Snowflake schema - with their entities (fact and dimension tables) are discussed. Section 4 deals with the warehousing design from the database viewpoint. Then, the conversion of data collected during the logical design into physical database structures is dealt with materialized views. Section 5 contains conclusions.

## 2 Data warehouse architecture

The architecture overview of the referring application context - the Italian railway system for the booking process [5, 10]-is shown in Figure 1.

It comprises the usual different levels of data flow corresponding to the sequence of steps for adapting the data to the decision-maker needs [3, 7-12].



The source data flows dealt with by Transaction Processing Facility (*TPF*) come from the Sale System of the operational Passengers Information System (*PIS*) and from the set of information concurring in the booking analysis. Besides *PIS/TPF*, the other operational systems involved are the National Train database (*NT*), which contains the train route and railway kilometres, the Trains-Travellers Composition database (*TTC*), which contains saleable delivered services, associated trains and antenna trains (coupling/release), and the Trains-Travellers Frequenting database (*TTF*), which contains the train registry. Further details can be found in [9-10].

## **3** The design process

The design process must be oriented to the end users' needs through the two main types of objects commonly used in dimensional data warehousing, *viz.*, fact and dimension tables.

Fact tables are the large tables in the warehouse schema that store business measurements. Fact tables typically contain facts and foreign keys to the dimension tables. Fact tables represent data, usually numeric and additive, that can be analyzed and examined. Therefore, the fact table has columns that contain both numeric facts (measurements) and foreign keys (FK) to dimension tables. The fact table contains either detail-level facts or facts that have been aggregated (summary tables).

A dimension table is a structure, often composed of one or more hierarchies, that categorizes data. Several distinct dimensions, combined with facts, enable to answer business questions. Dimension data are collected at the lowest level of detail and then hierarchically aggregated into higher level totals that are more useful for analysis. Data warehouses use a dimensional model where multidimensional data structures are basic elements. Multidimensional data structures are based on the separation of quantitative and qualitative data.

The *star schema* is the most common and natural way to model the data warehouse. In fact, only one join has to be executed to establish the relationship between the fact table and any one of the dimension tables. The star schema shown in Figure 2 represents a part of the data marts of the data warehouse of the customer *Trenitalia*, the Italian main train service company, realized in collaboration with *TSF* (railway telesystems company), the IT solutions provider. The central node, or the CMM\_DMT\_TPF\_TTC\_TPF\_ELE table, is the fact while the other tables are the dimensions. Their semantics is reported in Tables 1 to 5, respectively.

On the other hand, a *snowflake schema* is a transformation of a star schema based on the third normal form. Redundancies are eliminated by the normalization of the dimension tables, by grouping dimension data into multiple tables instead of one large table. For every dimension hierarchy, there exists a separate table (dimension table). Figure 3 is an example of snowflake schema extracted from the overall data marts model. The central node, or the fact, is the CMM\_DMT\_TPF\_TPF table and has five dimension nodes. Their semantics is reported in Tables 6 to 8, 3, 4, and 9, respectively. On its hand, the CMM\_DMT\_TPF\_ANA\_TRE\_TPF\_GIO\_MVT dimension has been implemented with a materialized view and it has five "sub-dimensions" tables whose semantics is reported in Tables 10, 5, and 11 to 13, respectively.

The complete data marts ER model of the national railway data warehouse is given in Figure 4.

# 4 Physical design

Physical design decisions are mainly driven by query performance and database maintenance aspects. During the logical design phase, a model for the data warehouse consisting of entities, attributes and relationships is created, as shown in the previous section.

During the physical design process, the translation of the expected logical schemas into actual database structures occurs. The structures mentioned are those provided by the Oracle DBMS, which is used by *TSF* provider for the implementation of the data warehouse subject of the present case study [1, 6, 14-15].

### Tables and Partitioned Tables

Tables are the basic unit of data storage. They are the containers for the expected amount of raw data in a data warehouse.

Using partitioned tables instead of nonpartitioned ones addresses the key problem of supporting very large data volumes by allowing their decomposition into smaller and more manageable pieces. The main design criterion for partitioning is manageability, though performance benefits will be seen in most cases because of partition pruning or intelligent parallel processing.

Partitioned tables allow data to be broken down into smaller, more manageable pieces called partitions, or even subpartitions. Each partition can be managed individually, and can function independently of the other partitions, thus providing a structure that can be better tuned for availability and performance. When using parallel execution, partitions provide another means of parallelization. Operations on partitioned tables are performed in parallel by assigning different parallel execution servers to different partitions of the table.

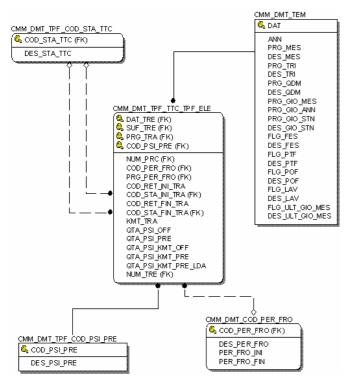



Fig. 2. A Star Schema.

| CMM_DMT_TPF_TTC_TPF_ELE FACT TABLE |                                                            |
|------------------------------------|------------------------------------------------------------|
| FIELD NAME                         | DESCRIPTION                                                |
| DAT_TRE (FK)                       | Train Date                                                 |
| SUF_TRE (FK)                       | Train Suffix                                               |
| PRG_TRA (FK)                       | Elementary Route Number of the Train Route Sort            |
| COD_PSI_PRE (FK)                   | Booked Seat Code                                           |
| NUM_PRC (FK)                       | Train Route Number                                         |
| COD_PER_FRO (FK)                   | Railway Period Code                                        |
| PRG_PER_FRO (FK)                   | Railway Period Number                                      |
| COD_RET_INI_TRA                    | Elementary Route Leaving Railway Code                      |
| COD_STA_INI_TRA (FK)               | Elementary Route Leaving Station Code                      |
| COD_RET_FIN_TRA                    | Elementary Route Final Railway Code                        |
| COD_STA_FIN_TRA (FK)               | Elementary Route Final Station Code                        |
| KMT_TRA                            | Railway Kilometre Train                                    |
| QTA_PSI_OFF                        | Total Number of Delivered Seats                            |
| QTA_PSI_PRE                        | Total Number of Booked Seats                               |
| QTA_PSI_KMT_OFF                    | Total Number of Delivered Seats per Km                     |
| QTA_PSI_KMT_PRE                    | Total Number of Booked Seats per Km                        |
| QTA_PSI_KMT_PRE_LFA                | Total Number of Booked Seats per Km in the<br>Waiting List |
| NUM_TRE (FK)                       | Train Number                                               |

Tab. 1. TPF/TTC elementary fact data mart.

| CMM_DMT_TPF_COD_STA_TTC DIMENSION TABLE |                  |
|-----------------------------------------|------------------|
| FIELD NAME                              | DESCRIPTION      |
| COD_STA_TTC (FK)                        | TTC Station Code |
| DES_STA_TTC                             | TCC Station Name |

Tab. 2. TTC station data mart.

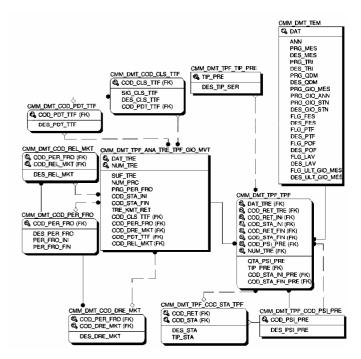



Fig. 3. A Snowflake schema.

| CMM_DMT_TEM DIMENSION TABLE |                                   |
|-----------------------------|-----------------------------------|
| FIELD NAME                  | DESCRIPTION                       |
| DAT                         | Date                              |
| ANN                         | Year                              |
| PRG_MES                     | Month Number                      |
| DES_MES                     | Month Name                        |
| PRG_TRI                     | Quarter Number                    |
| DES_TRI                     | Quarter Description               |
| PRG_QDM                     | Four-month Period Number          |
| DES_QDM                     | Four-month Period Description     |
| PRG_GIO_MES                 | Day Number in the Month           |
| PRG_GIO_ANN                 | Day Number in the Year            |
| PRG_GIO_STN                 | Day Number of the Week            |
| DES_GIO_STN                 | Day Name                          |
| FLG_FES                     | Holiday Flag                      |
| DES_FES                     | Holiday Description               |
| FLG_PTF                     | Extra Long Holiday Flag           |
| DES_PTF                     | Extra Long Holiday Description    |
| FLG_POF                     | After-holiday Flag                |
| DES_POF                     | After-holiday Description         |
| FLG_LAV                     | Workday Flag                      |
| DES_LAV                     | Workday Description               |
| FLG_ULT_GIO_MES             | Last Day of the Month Flag        |
| DES_ULT_GIO_MES             | Last Day of the Month Description |

Tab. 3. Time data mart.

| CMM_DMT_TPF_COD_PSI_PRE DIMENSION TABLE |                         |
|-----------------------------------------|-------------------------|
| FIELD NAME                              | DESCRIPTION             |
| COD_PSI_PRE                             | Booked Seat Code        |
| DES_PSI_PRE                             | Booked Seat Description |

Tab. 4. Booked place data mart.

| CMM_DMT_TPF_COD_PER_FRO DIMENSIONTABLE |                            |
|----------------------------------------|----------------------------|
| FIELD NAME                             | DESCRIPTION                |
| COD_PER_FRO (FK)                       | Railway Period Code        |
| DES_PER_FRO                            | Railway Period Description |
| PER_FRO_INI                            | Start Railway Period       |
| PER_FRO_FIN                            | End Railway Period         |

Tab. 5. Railway period data mart.

| CMM_DMT_TPF_TPF FACT TABLE |                              |
|----------------------------|------------------------------|
| FIELD NAME                 | DESCRIPTION                  |
| DAT_TRE (FK)               | Train Date                   |
| COD_RET_TRE (FK)           | Train Railway Code           |
| COD_RET_INI (FK)           | Leaving Station Railway Code |
| COD_STA_INI (FK)           | Leaving Station Code         |
| COD_RET_FIN (FK)           | Final Station Railway Code   |
| COD_STA_FIN (FK)           | Final Station Code           |
| COD_PSI_PRE (FK)           | Booked Seat Code             |
| NUM_TRE (FK)               | Train Number                 |
| QTA_PSI_PRE                | Booked Seats Total Number    |
| TIP_PRE (FK)               | Booking Type                 |
| COD_STA_INI_PRE (FK)       | Booked Leaving Station Code  |
| COD_STA_FIN_PRE (FK)       | Booked Final Station Code    |

Tab. 6. Transaction Processing Facility data mart.

| CMM_DMT_TPF_ANA_TRE_TPF_GIO_MVT DIMENSION TABLE |                           |
|-------------------------------------------------|---------------------------|
| FIELD NAME                                      | DESCRIPTION               |
| DAT_TRE                                         | Train Date                |
| NUM_TRE                                         | Train Number              |
| SUF_TRE                                         | Train Suffix              |
| NUM_PRC                                         | Train Route Number        |
| PRG_PER_FRO                                     | Railway Period Number     |
| COD_STA_INI                                     | Leaving Station Code      |
| COD_STA_FIN                                     | Final Station Code        |
| TRE_KMT_RET                                     | Railway Kilometre Train   |
| COD_CLS_TTF (FK)                                | Train Classification Code |
| COD_PER_FRO (FK)                                | Railway Period Code       |
| COD_DRE_MKT (FK)                                | Marketing Directrix Code  |
| COD_PDT_TTF (FK)                                | Product Code              |
| COD_REL_MKT (FK)                                | Marketing Relation Code   |

Tab. 7. Daily train movement data mart.

| CMM_DMT_TPF_TIP_PRE DIMENSION TABLE |                          |
|-------------------------------------|--------------------------|
| FIELD NAME                          | DESCRIPTION              |
| TIP_PRE                             | Booking Type             |
| DES_TIP_SER                         | Service Type Description |

Tab. 8. Booking type data mart.

| CMM_DMT_TPF_COD_STA_TPF DIMENSION TABLE |                      |
|-----------------------------------------|----------------------|
| FIELD NAME                              | DESCRIPTION          |
| COD_RET (FK)                            | Station Railway Code |
| COD_STA (FK)                            | Station Code         |
| DES_STA                                 | Station Name         |
| TIP_STA                                 | Station Type         |

Tab. 9. Railway station data mart.

| CMM_DMT_COD_DRE_MKT DIMENSION TABLE  |                                 |
|--------------------------------------|---------------------------------|
| FIELD NAME                           | DESCRIPTION                     |
| COD_PER_FRO (FK)                     | Railway Period Code             |
| COD_DRE_MKT (FK)                     | Marketing Directrix Code        |
| DES_DRE_MKT                          | Marketing Directrix Description |
| Tab 10 Directrix marketing data mort |                                 |

Tab. 10. Directrix marketing data mart.

| CMM_DMT_COD_REL_MKT DIMENSION TABLE |                                |
|-------------------------------------|--------------------------------|
| FIELD NAME                          | DESCRIPTION                    |
| COD_PER_FRO (FK)                    | Railway Period Code            |
| COD_REL_MKT (FK)                    | Marketing Relation Code        |
| DES_REL_MKT                         | Marketing Relation Description |

Tab. 11. Relation marketing data mart.

| CMM_DMT_COD_PDT_TTF DIMENSION TABLE |                     |
|-------------------------------------|---------------------|
| FIELD NAME                          | DESCRIPTION         |
| COD_PDT_TTF (FK)                    | Product Code        |
| DES_PDT_TTF                         | Product Description |

Tab. 12. TTF product data mart.

| CMM_DMT_COD_CLS_TTF DIMENSION TABLE |                                  |
|-------------------------------------|----------------------------------|
| FIELD NAME                          | DESCRIPTION                      |
| COD_CLS_TTF (FK)                    | Train Classification Code        |
| SIG_CLS_TTF                         | Train Classification Signature   |
| DES_CLS_TTF                         | Train Classification Description |
| COD_PDT_TTF (FK)                    | Product Code                     |

Tab. 13. TTF classification data mart.

Partitions and subpartitions of a table all share the same logical attributes. However, they can have different physical attributes (such as the belonging tablespaces). Storing partitions in separate tablespaces enables: the reduction of the possibility of data corruption in multiple partitions, backup and recover independent for each partition, controlling the partitions mapping to disk drives (important for balancing I/O load), improving manageability, availability and performance.

#### Materialized Views

Materialized views are used in data warehouses to increase the speed of queries on very large databases. Queries to large databases often involve joins between tables and/or aggregations such as SUM, which are expensive operations in terms of time and processing power. The type of materialized view determines how the materialized view is refreshed and used by query rewrite. Materialized views can be created also in order to replicate data, as snapshots. When used for query rewrite, they improve query performance by precalculating expensive aggregations and joins prior to execution and storing the results in the database.

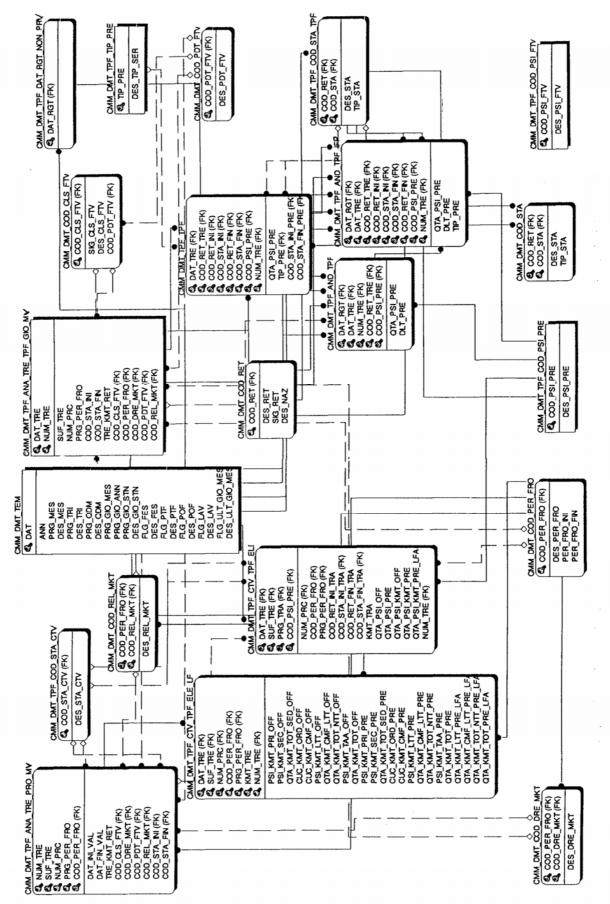



Fig. 4. Data Marts ER Model.

The query optimizer automatically recognizes when an existing materialized view can and should be used to satisfy a request. If the recognition is successful, then the data are taken directly from the materialized views and not from the underlying tables.

#### Summaries and query rewrite

Typically, data flow from one or more online operational sources (OLTP databases) into a data warehouse on a monthly, weekly, or daily basis. Usually, the vast majority of the data is stored in a few very large fact tables. One technique employed in data warehouses to improve performance is the creation of summaries. Summaries are special kinds of aggregate views that improve query execution times by pre-calculating expensive joins and aggregate operations prior to execution and storing the results in a table. These can be implemented with materialized views, which can perform a number of roles, such as improving query performance or providing replicated data, *i.e.*, behaving like snapshots.

The type of materialized view determines how the materialized view is refreshed and used by query rewrite. When an existing materialized view satisfies a request, queries are moved to it and not to the underlying table: this improves response. A materialized view definition can include a number of aggregations (sum, count, average, variance, min, max) and joins. If it has to be used by query rewrite, then it must be stored in the same database as the fact or detail tables on which it relies.

The materialized views can be with aggregates and/or with only joins. In data warehouses, materialized views normally contain aggregates whereas some ones contain only joins and no aggregates. The advantage of the latter is that expensive joins will be pre-calculated.

# **5** Concluding remarks

Decision support systems technology and applications evolved significantly in last years. The design and the implementation of a national data warehouse presented in this paper address some of problems of this area. In particular, data warehousing is useful for organizations producing or manipulating large or huge amounts of data that need to be suitably and profitably analyzed. Nevertheless, organizations attempting to embrace data warehousing must have a high IT maturity degree, because of the costs that data warehouse maintenance implies in terms of constant optimization due to the frequent modifications of user's needs. For increasing the diffusion of this profitable technology, we claim the need of a standardization activity for the life cycle of data warehouse building in order to limit their costs.

#### References

- [1] R. Baylis, K. Rich, and J. Fee, *Oracle 9i Database Administrator's Guide*, Release 1 (9.0.1), Oracle Corporation 2001.
- [2] M. Boehnlein and A. Ulbrich-vom Ende, Deriving Initial Data Warehouse Structures from Conceptual Data Models of the Underlying Operational Information Systems, *DOLAP '99* Proc. *ACM*, pp. 15-21.
- [3] S. Chaundhuri, U. Dayal, and V. Ganti, Database technology for decision support systems, *IEEE Computer*, Vol. 34, No 12, 2001, pp. 48-55.
- [4] C. P. Chua and R. Green, *Data Warehousing Fundamentals*, Oracle Corporation 1999.
- [5] L. Cupertino, *Building a Successful Data Warehouse: Design, Implementation, and Tuning*, Thesis dissertation 2005.
- [6] M. Cyran and C. Dialeris Green, Oracle 9i Database Performance Guide and Reference, Release 1 (9.0.1), Oracle Corporation 2001.
- [7] C. dell'Aquila, E. Lefons, and F. Tangorra, Decisional portal using approximate query processing, *WSEAS Transactions on Computers*, Vol. 2, No 2, 2003, pp. 486-492.
- [8] C. dell'Aquila, E. Lefons, and F. Tangorra, Approximate query processing in decision support system environment, *WSEAS Transactions on Computers*, Vol. 3, No 3, 2004, pp. 581-586.
- [9] C. dell'Aquila, E. Lefons, and F. Tangorra, Backend and Front-end Solutions for a Data Warehousing Case Study, WSEAS Transactions on Computers, vol. 4, no. 10, 2005, pp. 1259-1269.
- [10] C. dell'Aquila, E. Lefons, and F. Tangorra, Data warehousing System for National Railway Traffic, WSEAS Transactions on Information Science and Applications, vol. 2, no. 6, 2005, pp. 726-735.
- [11] M. Janesch, *Implementing the Best Data Warehousing Tuning Techniques for Your Environment*, Innovative Consulting 2001.
- [12] M. Jarke, M. Lenzerini, Y. Vassiliou, and P. Vassiliadis, *Fundamentals of Data Warehouses*, Springer-Verlag, 2003.
- [13] R. Kimball and M. Ross, *The Data Warehouse Toolkit*, 2<sup>nd</sup> edition, John Wiley & Sons, 2002.
- [14] P. Lane, V. Shupmann, *Oracle 9i Warehousing Guide*, Release 1 (9.0.1), Oracle Corporation 2001
- [15] L. McGeen Lusher, Oracle 9i Database Concepts, Release 1 (9.0.1), Oracle Corporation 2001.