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Abstract: The clutter is always present in the radar signal, so it is important to generate models that give us the
possibility to minimize its effect in the detection of targets in a radar space. In that way, it is focused this paper,
where, we try to propose a model that generates discrete time coherent sequences with a Weibull distribution for its
modulus and a Uniform distribution for its phase. The coherent Weibull sequence is achieved in two steps. The fist
one generates a coherent correlated Gaussian sequence (CCGS) from a coherent white Gaussian sequence (CWGS)
using a correlator filter. The second one generates with a NonLinear MemoryLess Transformation (NLMLT) a
coherent correlated Weibull sequence (CCWS) from the CCGS generated before. The covariance matrix of the
CCWS desired fixes all the parameters of the correlator filter and the NMLT. This matrix includes the power of the
sequence, the correlation coefficient between its samples and the clutter frequency of the sequence that models the
radar clutter.
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1 Introduction
Modelling clutter radar sequences is important to
study the detection skills of the radar detectors. In
that way, it is generated this investigation. So, several
works have developed models of clutter radar based
on the Weibull distribution [1] [2]. So, this model is
considered in this article. Other models based on K-
distribution and Log-Normal distributions proposed
different models of radar clutter [3]. These models are
valid for different situations where the radar detector
works.

The sections 2 and 3 presents the mathematical
procedure to obtain a sequence having a Weibull Prob-
ability Distribution Function (PDF) for the amplitude,
a uniform PDF for the phase and an AutoCorrelation
Function (ACF), between the successive samples, se-
lected as we want with the use of the covariance ma-
trix. Section 2 introduces the concept of a coherent
Weibull random variable (RV) and describes the cor-
responding statistical properties. The coherent cor-
related Weibull sequence (CCWS) is dealt with in
section 3. It is shown that the CCWS is obtained
by feeding with a coherent correlated Gaussian se-
quence (CCGS) a NonLinear MemoryLess Transfor-
mation (NLMLT). The main result of this subsection
is the derivation of an explicit relationship between
the ACFs of the Gaussian and the Weibull sequences,

at the input and the output of the nonlinear device, re-
spectively. The section 4 is dedicated to establish the
parameters used to estimate the error and the conve-
nience of using the model proposed. Finally, several
trials made to demonstrate the convenience of the pro-
posed model are shown in the section 5 and the con-
clusions of the developed investigation are given in
the section 6.

2 Coherent Weibull random variable
Starting with the definition of a complex-valued (i.e.
coherent) Weibull random variable w = u+jv, where
u and v are the in-phase and quadrature components
of the Weibull variable, respectively. The variable w is
obtained by multiplying a real-valued Weibull random
variable (the amplitude of the coherent variable) by
the factor exp(jφ), where φ (the phase of the coher-
ent variable w) is another real-valued random variable
evenly distributed in the interval [0, 2π) and indepen-
dent of the amplitude |w|. The joint PDF of (u, v) is
found to be
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1
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where a is the skewness parameter of the Weibull vari-
able, and σ2 is related to the power of w. Extend-
ing the nomenclature already established for the real-
valued Weibull variates [4], we define the scale factor
b with

b =
(
2σ2

) 1
a (2)

which is related to the power of w as follows:

E{|w|2} = E{|u2 + v2|} =
2b2

a
Γ

(
2
a

)
(3)

where Γ() is the Gamma function.
The PDF of the amplitude |w| is the well known

PDF of the real-valued Weibull variable, namely [4]

p(|w|) = ab−a|w|a−1e−
( |w|

b

)a

(4)

It is also demonstrated that the PDF of the vari-
able tan−1

(
v
u

)
is evenly distributed in the interval

[0, 2π), and hence the RV has circular simetry as the
coherent Gaussian RV. The amplitude and the phase
are independent RVs, i.e. p(|w|, φ) = p(|w|)p(φ).
The marginal PDFs of u and v are

p(u) = p(v) =
∞∫

−∞
p(u, v)du (5)

The integral can not be solved in closed form in
the general case, but rather by resorting to numerical
integration. It is found that the variables u, v and w
have zero mean values. When a equals 2, the PDF
p(u, v) is Gaussian and the corresponding amplitude
|w| is Rayleigh. When a equal 1, an Exponential PDF
of the amplitude is obtained. As a goes to zero, the
tails of the PDFs of u, v and |w| increase.

3 Model of the coherent Weibull se-
quence generator

The model took for generating coherent Weibull se-
quences is shown in fig. 1. This generator is com-
posed of two blocks. The first one is the Correla-
tor Filter, which is used to correlate a coherent white
Gaussian sequence (CWGS), in order to obtain a co-
herent correlated Gaussian sequence (CCGS). This
block is explained in depth in the subsection 3.1. The
second block is used to obtain the coherent correlated
Weibull sequence (CCWS) from a CCGS with an
specified covariance matrix. This block is explained
in depth in the subsection 3.2.
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Figure 1: Generator of coherent correlated Weibull se-
quences

3.1 Correlator filter
The aim of this block is to obtain a CCGS with a de-
sired covariance matrix from a zero mean and unity
power CWGS. This covariance matrix involves para-
meters like the correlation coefficient of the samples
and the power of the sequence. This matrix, its prop-
erties and the way to obtain it are explained in depth
in the subsection 3.2.

The first step to achieve our objective is to gener-
ate a CWGS. This sequence is obtained with (6).

ξ′[k] = x′[k] + jy′[k] (6)

where k denotes the k-th instant of the sequence and
the sequences x′ and y′ are real-valued gaussian se-
quences with zero mean and a power of 1√

2
, each. So

the sequence ξ′ has zero mean and unity power.
In order to transform the CWGS present at the

input of the Correlator Filter in the desired CCGS ,
it is necessary to obtain the coefficients of this filter.
The filter makes the transformation of the sequences
like is noted in (7)

ξ = U∗L
1
2 ξ′ (7)

where U is the matrix with the eigenvectors of the co-
variance matrix of the desired CCGS (McG) and L is
the diagonal matrix with the eigenvectors of the McG

matrix. The sizes of both matrixes is NxN , where N
is the length of the sequence (column vector) of ξ and
ξ′.

3.2 NonLinear MemoryLess Transforma-
tion

This block deals with the problem to obtain a CCWS
with a desired covariance matrix (McW ) from a
CCGS. In order to design it, it is necessary to define
which are the parameters of the CCWS and its covari-
ance matrix (McW ).

One way to obtain a CCWS from a CCGS is
shown in fig. 2 [5] . In this figure, a denotes the skew-
ness parameter of a Weibull sequence.

It is demonstrated in [2] that the McW matrix de-
pends on the power of the CCWS (PcW ), the corre-
lation coefficient of the CCWS (ρcW ) and its doppler
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Figure 2: NonLinear MemoryLess Transformation
(NLMLT)

frequency (fcW ). The last parameter is an application
of the problem we deal with, the generation of syn-
thetic radar sequences. Expression (8) shows how the
McW matrix is computed knowing these parameters
of the sequence.

(McW )h,k = PcW ρ
|h−k|
cW ej(2π(h−k)fcW ) (8)

In (8), h and k denote the indexes of the elements
of the matrix, where both varies from 1 to N (length
of the sequence to generate).

Whereas, the McG matrix is computed with ex-
pression (9) in the same way as (8) and with the same
kind of parameters but applied to the CCGS, where h
and k are the same as used in (8).

(McG)h,k = PcGρ
|h−k|
cG ej(2π(h−k)fcG) (9)

For the expressions (8) and (9), several relation-
ships between their parameters exist. The power of
the CCGS (PcG) is related to the power of the CCWS
(PcW ) using the expression (10). The PcW depends
only of the a and b parameters of the CCCWS. These
parameters, its use and its interpretation are defined
for expression (12).

PcG = ba (10)

The doppler frequency of the CCGS (fcG) is re-
lated to the doppler frequency of the CCWS (fcW ) us-
ing the expression (11).

fcG = fcW (11)

The relationship between the correlation coeffi-
cient of the CCWS (ρcW ) and the coefficient of the
CCGS (ρcG) is given by (12)

ρcW =
ρcGa

aΓ( 2
a)

(
1− ρ2

cG

) 2
a
+1

Γ2
(

1
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2

)

F

(
1
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2
;
1
a

+
3
2
; 2; ρ2

cG

)
(12)

where Γ() is the Eulero Gamma function [7] and
F (A; B;C; D) is the Gauss Hypergeometric function
[7], b is the scale parameter (related with the power
of the sequence) and a is the shape parameter (called
skewness parameter) of the Weibull sequence.

It is appreciated that for a = 2, the correlation
coefficients ρcW and ρcG are the same because the se-
quences at the input (ξ) and at the output (w) coincide.
This affirmation can be compared with that obtained
in the section 2 for the same value of a.

In [5] it is demonstrated that for high values of
ρcG, a linear dependency between ρcW and ρcG can
be drawn by (13)

ρcW = KaρcG + (1−Ka) (13)

where Ka depends on the value of the skewness para-
meter of the Weibull sequence. A set of Ka values is
given in (14)

K0.6 = 1.758
K0.8 = 1.406
K1.2 = 1.112 (14)

4 Confidence of the generated se-
quences

The confidence of the generated sequences is mea-
sured in two ways, based in the Probability Distrib-
ution Function (PDF) and based in the covariance ma-
trix.

The first one deals with the mean error obtained
in the PDF between the theoretical and practical cases.
This error is measured with the expression (15)

ePDF =
1
M

M∑

k=1

|PDFTH − PDFPR| (15)

where M is the number of bins took for the discretiza-
tion of the theoretical PDF (PDFTH ) and the practi-
cal PDF (PDFPR). The PDFTH is the theoretical
PDF of a Weibull sequence with specific a and b pa-
rameters. Whereas, the PDFPR is estimated with the
histogram of M bins of the generated sequence ob-
tained from the generator proposed in section 3.

The second way to measure the confidence of the
generated sequence is based in the computation of the
mean error of the covariance matrix generated by the
generator proposed in section 3. This error can be cal-
culated with expression (16)
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Figure 3: Temporal representation of the discrete time
Weibull sequence for the same Clutter Power (Pcw =
20dB) and different combination of parameters like
{ρcw = 0.8; a = 0.6; b = 3.3} and {ρcw = 0.8; a =
1.2; b = 8.3}

eMc =
1

N2

∣∣∣∣∣
N∑

k=1

N∑

n=1

(Mc)h,k −
(
M ′

c

)
h,k

∣∣∣∣∣ (16)

where ()h,k denotes the indexes of the element the
matrixes Mc (the desired covariance matrix of the se-
quence) and M ′

c (the covariance matrix of the gener-
ated sequence). The matrix M ′

c can be obtained with
the expression (17)

M ′
c = E[w∗wT ] (17)

where E[] is the mathematical expectation, w∗ de-
notes the complex conjugation of the samples that
compose the coherent Weibull sequence w and wT de-
notes the transposition of the matrix (vector) where is
stored the coherent Weibull sequence w.

5 Results
According to the explanations of the previous sec-
tions, here it is shown the results of the analysis of
the generated sequences.

Figures 3 and 4 show the temporal representa-
tion of several Weibull sequences generated with the
model we propose. They are generated for coeffi-
cient parameters usually used in the generation of
radar models [5]. These values of the parameters are
ρcW = 0.8 and ρcW = 0.9, which indicates that the
samples of the sequences have a high correlation be-
tween them. This effect is perfectly viewed in both
figures. The length of the sequences generated is 1000
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Figure 4: Temporal representation of the discrete time
Weibull sequence for the same Clutter Power (Pcw =
20dB) and different combination of parameters like
{ρcw = 0.9; a = 0.6; b = 3.3} and {ρcw = 0.9; a =
1.2; b = 8.3}

samples, but in the figures is only represented the first
400 samples in order to view it with more detail.

In figures 5 and 6 it is shown the theoretical and
practical (measured with the histogram) PDFs. As can
be observed in both examples, the practical and theo-
retical PDFs are very similar. This test was made for
different values and the PDFs were always very close.
So, it can be conclude that the model proposed ap-
proximate the Weibull distribution for different com-
bination of parameters. Moreover, the phase distrib-
ution of the generated Weibull sequences is uniform,
as was taken in the model. This affirmation is made
taking into account the results shown in fig. 7.

The confidence, based in the PDF error, of
the generated sequences gives the following results:
ePDF = 2.0e−3 for parameters {ρcw = 0.9; a =
0.6; b = 3.3;Pcw = 20dB} and ePDF = 5.2e−3 for
parameters {ρcw = 0.9; a = 1.2; b = 8.3;Pcw =
20dB}. This errors have been obtained as the mean
of several trials. Whereas the confidence based on
the covariance matrix error of the generated Weibull
sequences is: eMc = 0.117 for parameters {ρcw =
0.9; a = 0.6; b = 3.3;Pcw = 20dB} and eMc =
0.106 for parameters {ρcw = 0.9; a = 1.2; b =
8.3;Pcw = 20dB}. Both errors are very low, so the
generated sequences can be taken as correct coherent
Weibull sequences.

6 Conclusions
As can be observed in the results obtained for the gen-
erated sequences, several signs avoid us to think that
the model proposed approximate the Weibull distrib-
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Figure 5: Theoretical and Practical PDFs for a discrete
time Weibull sequence of parameters {ρcw = 0.9; a =
0.6; b = 3.3;Pcw = 20dB}

ution we are looking forward. The first sign is that the
distribution of the modulus of the coherent sequence is
approximated in a correct way by the model proposed.
The second sign is that the phase distribution of the
coherent sequence has a circular symmetry in the Real
Vs Imaginary part representation, what is an indica-
tive that its phase distribution is uniform. And the
third one is that the coefficients (errors) took for esti-
mating the confidence of the generated sequences are
very low, what is an indication that the model works.
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