Proceedings of the 5th WSEAS Int. Conf. on Signal Processing, Robotics and Automation, Madrid, Spain, February 15-17, 2006 (pp341-344)

Detection by the stochastic classification matched filter
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Abstract : This paper deals with stochastic zero-mean signals detection. Second order statistical moments of signals
is assumed to be known. We propose an adaptated method based on a linear filtering under constraint optimizing a
criterion based on different signal to noise ratios. This optimisation leads to the choice of a 1D subspace on which the
different signals are projected. We also present simulations and results obtained with different signals.
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1 Introduction

This paper deals with a signal classification method based
on projection onto a specific subspace. All signals are
supposed to be zero mean and the perturbation is addi-
tive. We suppose only known their second-order statistics
only (a priori or experimentally estimated). The follow-
ing method consists of a filtering under constraint which
optimizes the Signal to Noise Ratio (SNR) in a 1D sub-
space. The performances of this method will be evaluated
by using the classical Receiver Operating Characteristics
curves (COR curves).

This document focuses on the classical signal theory prob-
lem: the detection of a specific process embedded in addi-
tive noise [4]. Most of the time are considered a signal s
and a noise b, and we need to decide whether s is present
or not. The usually used model is an additive superposi-
tion of a deterministic signal with a random noise. In this
case, if probability density functions are known, a method
like likelihood ratio [7] [5] [1] can be used. If only the sec-
ond order statistics of the signals are known, the matched
filter or derived methods [8] [2] can be used. When more
than one noise is present, the classical approach is to con-
sider for noise the mean of all different disturbing signals
and use the classical method.

In the following, both signal and noise(s) are assumed to
be zero mean realisations of independant random func-
tions. The only information available about these signals
is their second order statistics. All probabilities density
functions are unknown.

The method developped in this paper is based on maxi-
mization of an energy based criterion. The interest sig-
nal s can be disturbed by one of different noises noted
b;,1 < i < Np. In the case of a unique noise, the classi-
cal criterion is the SNR, but another criterion needs to be
found when more that one noise can perturb the signal.
This criterion will be based on SNR, of each noise noted

detection, classification, matched filter, subspace projection, signal to noise ratio (SNR).

pi, 1 <1 < Ny and in the following, the geometrical mean
of each SNR : p = ~Ny/p1p1.--pn, will be considered.

We will determinate the linear filter which maximizes this
criterion. Filtering is the same action than projecting on
a 1D subspace, spanned by the filter vector.

The output magnitudes of the filtered signal are compared
to a threshold and allow us to decide whether the signal
is present or not.

This method is called
matched filtering".

"Stochastic classification by

2 Notations and classical method

The following notations will be used:

A : signal covariance matrix

B; it" noise covariance matrix

M! inverse of non singular matrix M
tr(M) trace of M

In N by N identity matrix

En N dimension space

0ij : Kronecker symbol
SNR Signal to noise ratio

All signals are sampled, represented by a N dimension
vector, and zero mean. All the probability density func-
tions are unknown and the only available information is
the second-order statistics, via the covariance matrices.

The classical approach, when a signal can be disturbed
by more that one noise, is to consider a single perturbing
process which is the mean of all different noises. To show
improvement due to the method described in this paper, it
will be compared to the Stochastic Matched Filter (SMF)
method.
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2.1 Stochastic Matched Filter (SMF)

the SMF theory has been developped in the specific case
of a unique signal and a unique noise. The observation x
follows one of the two hypothesis:

Hp : x — noise alone
H, : x = signal + noise

The aim of this method is to find the linear filter h max-
imizing the SNR. If A and B are respectively the signal
and the noise covariance matrices, h is a vector matched
to signal and unmatched to noise.

This SNR after filtering can be written:

h” Ah

RSB = p— 2 A1
’ = WTBh

If normalized matrices are used (tr(A) = tr(B) =
can be seen as a gain on the initial SNR.

If B is singular, the solution of this maximization problem
is obtained by solving the generalized eigenvalue equation:

1), p

B !Ah = )\h

The optimal filter h is the eigenvector associated to the
largest eigenvalue, and this eigenvalue is the gain on the
SNR.
Practically, the matrix A has to be estimated, and as
signal and noise are supposed to be uncorrelated, we
can only access to A + B. The last equation becomes
(A +B) =B A 4 Iy. The corresponding eigenvec-
tors are the same than previously and the eigenvalues are
A; + 1. Thus, the method is still working.

3 Stochastic classification filter

3.1 Theory

A more general case is now considered: the signal s can
be perturbated by one of N, different noises. All noises
and signal are supposed to be uncorrelated.

We have now 2N, different hypothesis:

Hy; : x — noise b; alone

Hy; :x=s+6;,.b

For a noise ¢ considered, the first hypothesis is to con-
sider the noise alone and the second is to consider the
additive mixture of signal and noise. So, N noises corre-
spond to 2N different hypothesis.

We are looking for a filter h which maximizes a specific
energy based criterion. For each noise, the SNR after
filtering can be written:

~ h"Ah
" h'B;h

The criterion to optimize is the geometric mean of the p;:

Pgeo = ™/pP1...PN,

The filter h optimising p is matched to the signal and
unmatched to all b;.

To simplify calculations, the term p = Hivz”l p; 1S max-

imized instead of Nﬁ/ Hf\i’l pi (because all p; are positive).
The following notations are used:

Ny Ny T
h' Ah
p*il;[pﬁil;[hTBih
The derivative of this product is:
Ny

Z%Hm

i=1 j=1#1

We have
2(A—-p;B;)h

h'B;h

(A piB z
_— p =0

The term h? B;h cannot be null, so:
Ny Ny
> 2(A-pB)h]]p;=0
i=1 j=1

We definied p = vaz”l p;j # 0, so we finally find:

Opi

oh

SO

Ny

Z(A_PiBi)hZO

i=1

(1)

and so
Ny

Ah— = Z p:B;h

N, 2 (2)

The filter h we are looking for must satisfy the equation

(2) and is the vector among all associated to the largest
value of p.

3.2 Algorithm

Now, the equation (2) must be solved. To go back to a
classical eigenvalue equation, (2) can be written:

(A__sz 1,) :LplBh

The initial value of 5(® is:

B8O = (pa ...

(3)

7pr)
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We can take for initial values of p;,i > 2, the largest
eigenvalues of each B; ' A matrix.

h©® is the eigenvector associated to the largest eigenvalue

a©. The values of o® and h® are evaluated with the

equation (3). The p; must verify that Hivz”l pi s maximum.
hOTARO h@OTAR©®

/8(1) = PR )
h(O)TBlh(O) h(O)TBth(O)

and the same operations are iterated until the value of
Ap = ptD — p(") < ¢ with:

BW is estimated thanks to the vector h(®:

) Ny h™T AR™

o= e SNOLEWND

3.3 Convergence

Let us note p = vaz”l o, we can write for a little variation:

Nb Nb Nb Aa
o= 8 I[ =) p2
i=1 j=1,j#i i=1 v

The term Aaa’ has to be calculated. At the n + 2 itera-

tion, we can write:

a(n+2)
T h(n+1)TBih(n+1)

(h(”) + Ah)T A (h<"> + Ah)

T
(h<”> + Ah) B, (h<"> + Ah)
AhTAR™) AhTAA
(n+2) _ h™MTAR™ 1+ 2h(rl;,l>TAl;l(7L) h(rLl)lTAh(t:)
i T (T n AhTB;h(™) AhTB;Ah
h( ) Bih( ) 1+ 2h(77)TB “h() + h(WTB,h(™)

If we consider that the variation Ah is small, we can make
a first order Taylor approximation and we find:

AhTAR™  AK"B,h™
a§n+2) ~ ozgnﬂ) 142 = — !
h(n) Ah(n)

h(n)TBih(n)
and we can write:

a§n+2) — aEnH) B Aa§"+1)
Cyz(anrl) Cyz(anrl)
(n+1)
Aa?hu N h(n)TQAh(n) (AB"ARCT - T AKTBA)
but «; checks the equation (1), and so we deduce that:
Aa§n+1) B % o
aEnH) P

Convergence is assured and the unicity of the solution for
p is evident , but note that different subspaces can exist
for a same p value.

4 Experimental results

To illustrate the interest of the method proposed, 5 sta-
tionnary signals are taken into consideration. The first
signal is said to be the interesting signal and the 4 others
are noises. First, the classical SMF method is used. In
this case, we consider for noise the mean of all 4 previous
noises. In a second time, we use the method described in
this paper. Classical COR curves illustrate the improve-
ments brought by the method.

All signals have the same power and are 88 000 points
long (5500 realizations of 16 samples). Covariance matri-
ces are evaluated on 800 realizations and their dimension
is 16 x 16 samples. Figure (1) shows the FFT modulus of
the different signals.

Figures (2) and (3) show respectively the output signals
after filtering with the SMF and CSMF filters. The 5500
first samples represent the first signal filtered, the 5500
next samples represent the second signal filtered, and so
on up to the last signal.
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Figure 1: Signals FFT modulus

Figure 2: Filtered signals with SMF filter. Each point is
the result of the filtering of 16 samples signal realization.
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Figure 3: Filtered signals with CSMF filter. Each point is
the result of the filtering of 16 samples signal realization.
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Figure 4: COR curves improvement

COR curves are presented on figure (4). For detec-
tion probability higher than 0.6, the CSMF COR curve is
better than the SMF one. For applications needing a high
detection level, the CSMF method is better than the SMF
one, and we can get up to 0.1 in the detection probability.

5 Conclusion
In the classical detection problems, when only one signal

and one noise are present and when are only known the
two first order statistics, a lot of methods have been de-

velopped (SMF, ESMF, CSMF).

The method proposed in this paper deals with the case
of more than one noise disturbing the interesting signal.
This method is derived from the SMF method and leads to
a filter matched to the signal and unmatched to all noises.
The optimized criterion is the geometrical mean of all dif-
ferent SNR. An algorithm capable of finding this optimal
filter is proposed.

One can notice that this filtering is like a projection onto a
1D subspace. A natural extension to this method finding
p optimal filters consists in projecting onto the subspace
spanned by these vectors. This method could be compared
to Extented SMF (ESMF) or Constrained SMF (CSMF).
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