
 
 
 
 

 Splitting Algorithm for Solving an Integral Differential Equation 
 

NIKOS MASTORAKIS 
Head of the Department of Computer Science 

Military Inst. of University Education / Hellenic Naval Academy 
Terma Hatzikyriakou 18539, 

Piraeus, GREECE 
http://www.wseas.org/mastorakis 

 
OLGA MARTIN 

Department of Mathematics 
University “Politehnica” of Bucharest 

Splaiul Independentei 313 
Bucharest, ROMANIA 

 
Abstract. The initial-boundary value problem for a non-stationary transport equation is considered. This is rewritten as a Cauchy 
problem: dϕ /dt + Aϕ = F, ϕ⏐t = 0 = ϕ0. The unknown ϕ represents a suitable subset of a Hilbert space, whose elements are pairs of 
real-valued functions depending on three variables: a space variable z∈[0, H], an angle variable ν, with µ  = cos ν ∈ [0, 1] and a 
time variable t∈[0, T]. A difference scheme is given in order to approximate the space derivatives appearing in A. Then, the 
operator A is decomposed as A = A1 + A2   and another difference scheme is given to approximate the time derivatives. Finally, the 
numerical integration with respect to µ is carried out. One obtains an algorithm, which approximates the exact solution with an 
accuracy of second order in time step τ and in space step h. Several numerical examples are included. 
 
Key words: transport equation, difference scheme, Krank-Nicholson scheme, bicycle splitting-up method. 

 
 

1  Introduction 
 
The main problem in the nuclear physics is to find the 
neutron distribution in the reactor, hence its density, ϕ. 
This is a scalar function, which is studied in a plan-
parallel geometry and depends on the next variables: 
the position of the neutron on the Oz – axis, the 
neutron speed, which makes an angle ν with Oz and 
the time, t. The density is the solution of an integral 
differential equation, named the non-stationary 
neutron  transport equation.  
 Many authors paid attention to this 
problem, [2],[5],[6],[10],[14], but their papers are 
theoretical studies. In this paper we present an 
algorithm inspired by a splitting-up method, [5], 
applied to a non-stationary transport equation. In 
the general case, this method is hard to use, but 
for any symmetry of the source function, it leads 
to an algorithm flexible. We prove that the 
operators of the problem are positive. Also, we 
determine an aprioristic estimation of the solution. 

The study of the approximation of the solution 
with respect to time step, τ, shows that it is of the 
τ2 order. The numerical examples prove that the 
errors, which correspond of the approximate 
solutions, are minimum. 

 
2  Problem formulation 
 
Let us consider a transport equation in a plan – parallel 
geometry: 
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with the following boundary conditions: 
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and the initial condition: 
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.0 if  0 == tϕϕ         (3) 

 
The unknown ϕ  of the problem (1) – (3) is the density 
of the particles. These move with the speed vc , which 
makes an angle ν  with the real axis Oz at moment  t 
and µ = cosν. The right-hand side of (1), f, is the 
radioactive source,  the functions σ , σs are continuous 
in the interval [0, H] and satisfy  the conditions: 
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Further on, we consider for simplicity, vc = 1. Using 
the notations: 
 
             ϕ + = ϕ (z, µ, t) ;  ϕ -  = ϕ (z, -µ, t)      (5) 
 
 where µ  > 0, the equation (1) can be rewritten in the 
form:  
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Substituting: µ’ = - µ > 0, we get: 
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The boundary value problem becomes: 
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Adding and subtracting the equations (6) and 
introducing the notations: 
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we obtain the following system: 
 

  

 
.

1

0

rv
z
u

t
v

gduu
z
v

t
u

s

=⋅+
∂
∂
⋅+

∂
∂

+′=⋅+
∂
∂
⋅+

∂
∂

∫

σµ

µσσµ
      (9) 

 
The boundary - initial conditions are: 
   
      u + v = 0  for   z = 0 
                      (10) 
      u - v = 0  for   z = H  
     
and respectively:  
 

     u = u0,  v = v0  for  t = 0.                       (11) 
 
Now we rewrite the problem (9)-(11) in a operator 
form. For this purpose, we introduce the vector 
functions having two scalar components: 
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and the operator 
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Let us define in the measurable set D = [0, H]×[0,1], a 
Hilbert space L2(D) with the scalar product for every 
fixed t: 
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where α i, β i are the components of the vectors 
functions α, β. Then, we shall isolate in L2(D) a set Φ 
in the following manner: 
 
 { }∞<∈=Φ ),(),(2 wAwDLww   
Finally, we consider Φ0 ⊂ Φ, the subset of functions w 
with the next properties: are continuous, have ∂w/∂z 
continuous on D and the components u, v verify the 
conditions  (10). 
    Let us define the operator 

A
t

L +
∂
∂
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with the domain, D(L) =  Φ0. 
Consequently, the problem (9) – (11) becomes: 
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We prove that A positive operator, namely, 
(Aw,w)> 0 for each  w ≠ 0. We have 
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Using the Hölder inequality, we obtain 
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Finally, for σs ≤ σ we get 
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according with (7). If the operator L is positive, then 
the equation: 
 
   Lw = F     
 
has only one solution. Indeed, let w1≠w be an element 
such that 
   Lw1 = F. 
 
Hence, L(w – w1) = 0 ⇒  0),(0 =⇒= wwLwL . The 
operator L is positive, such that 0=w ⇒ w = w1.  
  
  

In order to get a solution of the problem (16), 
we go through three stages. 

 First, a difference scheme is given in order to 
approximate the space derivatives which appearing in 
A. We consider on  z – axis two points systems: 
          - a principal system, {zk}k, k ∈{0,1,...,N} with z0 
= 0 and zN = H; 
          - a secondary system,{zk+1/2}k, k ∈{0,1,...,N-1}, 
which verifies the inequality: zk -1/2 < zk <   zk+1/2.   
Integrating the first equation (9) on the intervals: 
 ( z0, z1/2 ), ( zk-1/2, zk+1/2 ), k∈{1, 2,…, N-1}, ( zN-1/2, zN ) 
and the second equation on ( zk-1, zk ),k∈{1, 2,…, N-1}, 
the system can be written in the form: 
 
 

           

∫∫∫∫

∫∫ ∫

∫∫∫

=+
∂
∂

+
∂
∂

+=

=+
∂
∂

+
∂
∂

1

0

1

0

1

0

1

0

2/1

0

2/1

0

2/1

0

2/1

0

2/1

0

'
1

0

z

z

z

z

z

z

z

z

z

z

z

z
s

z

z

z

z

z

z

dzrdzvdz
z
udzv

t

dzgdudz

dzudz
z
vdzu

t

σµ

µσ

σµ

(20) 

 
 

         

∫∫∫∫

∫∫ ∫

∫∫∫

++++

+

−

+

−

+

−

+

−

+

−

=+
∂
∂

+
∂
∂

+=

=+
∂
∂

+
∂
∂

1111

2/1

2/1

2/1

2/1

2/1

2/1

2/1

2/1

2/1

2/1

'

.......................................................................

1

0

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

z

z

z

z

z

z

z

z

z

z

z

z
s

z

z

z

z

z

z

dzrdzvdz
z
u

dzv
t

dzgdudz

dzudz
z
v

dzu
t

σµ

µσ

σµ

  

 
    (21) 

        

∫∫∫∫

∫∫ ∫

∫∫∫

−−−−

−−

−−−

=+
∂
∂

+
∂
∂

+=

=+
∂
∂

+
∂
∂

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

z

z

z

z

z

z

z

z

z

z

z

z
s

z

z

z

z

z

z

dzrdzvdz
z
udzv

t

dzgdudz

dzudz
z
vdzu

t

1111

2/12/1

2/12/12/1

'

.................................................................

1

0

σµ

µσ

σµ

 

 
With the following notations: 
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we define the mean values: 
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the first equation (20) by  ∆ z0  and the second by ∆ z1/2  
we obtain:   
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In accordance with the boundary conditions: 
 

  ( ) −
=

−+
= −=−== ϕϕϕ

2
1

2
1

000 zzvv    (25) 

  ( ) −
=

−+
= =+== ϕϕϕ

2
1

2
1

000 zzuu    (26) 

 
we have:  v0 = - u0  and the relation (24) can be 
rewritten in the form: 
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where the functions u, v  are replaced by their values 
in the points: z = 0, z  = 1/2 , z = 1 and by mean values. 
Similarly, we get 
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where  uN = vN. 
 
     Let us consider M(0, 2N), the Hilbert space of the 
vector functions α = ( α0, α1/2, α1,… αN ) with the 
scalar product: 
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We define the vector functions: 
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and the operator:  A = L – S, where 
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Then, the system (27) – (29) has the form: 
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where ϕ, f, ϕ 0 were defined by (32). For simplicity of 
the writing, we use the same notation as (1) – (3). 
     We shall prove that L and A are the positive 
operators. Indeed, let w∈ M and then 
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because continuous functions on [0,H],σi, are bounded 
on [0,H] and by hypothesis σ  ≥ σ 0 > 0. Using above 
results, we obtain: 
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Now, we find an aprioristic estimation of the solution 
of the problem (35), using the Cauchy-Schwarz 
inequality and the property that A is positive. 
Multiplying scalar (35) by ϕ and integrating with 
respect to t, we get 
 

.
2
1

2
1),(

2
1),(

2
1

2
1),(),(

2
1

20

2/1
2

0

2/1

0

2

20
2/1

0

2/1

0

2

20
2/1

0

2
2/1

0

2

20

00

2

ϕ

ϕϕϕ

ϕϕϕ

ϕϕ

ϕϕϕϕϕ

+

+⎟
⎠

⎞
⎜
⎝

⎛ +′⎟
⎠

⎞
⎜
⎝

⎛ ′≤

≤+⎟
⎠

⎞
⎜
⎝

⎛ ′⎟
⎠

⎞
⎜
⎝

⎛ ′≤

≤+⎟
⎠

⎞
⎜
⎝

⎛ ′⎟
⎠

⎞
⎜
⎝

⎛ ′≤

≤+′=′+

∫∫

∫∫

∫∫

∫∫

tdAtdfC

tdAtdfC

tdtdf

tdftdA

tt

tt

tt

tt

 

 
Using the following inequality 
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we find the estimation of the solution ϕ of the form: 
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where the constant K does not depend on t and ϕ. 
 
 In the second stage a difference scheme is 
given to approximate the time derivatives. This is used 
together with the bicycle splitting-up method,[5], 
which writes the operator A as a sum: 
  
       A(t) = A1(t) + A2(t) , A1(t) ≥ 0, A2(t) ≥ 0    (36) 
 
Let us divide the close interval [0, T] into n 
subintervals by choosing points: t0 = 0, t1, …., tn =T.  
Next, we take an arbitrary subinterval: [tj-1, tj+1] = 
= [ tj-1, tj-1/2 ]∪ [ tj-1/2, tj ]∪ [ tj, tj+1/2 ]∪[ tj+1/2, tj+1 ], 
which has the length equal to 5τ, where τ is the time 
step. Approximating the operators A1, A2 on this the 
subinterval by: 2,1),( ==Λ ktA jk

j
k , we shall obtain 

from (35) a difference system using the Krank-
Nicholson scheme, [5]:   
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where fj j is the vector with the components: 
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In other form we obtain:  
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where E is unit matrix and : 
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Finally, we have the recurrence formula 
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where jjjjj TTTTT 1221= .  
 
Now, we prove that numerical solution 
approximates the exact solution with an accuracy 
of second order in time step τ. 
 
 

Approximation 
 

For the estimation of approximation order, we shall 
expand with respect to the power of small τ, the 
expression 
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When the operators are non-commutative, the 
approximation with the splitting-up algorithm is of the 
first order with respect to τ. 
Let us now consider 
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Hence, the following estimation is valid in the interval 
[tj-1, tj+1]: 
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Using the Taylor series expansion of the solution ϕ in 
the neighborhood of the point tj-1 and substituting tj for 
t, we can write: 
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and (45) becomes: 
   
 )()( 21 τττϕϕ ofE jjjj ++Λ−= − . 
 

This relation is an approximation with the accuracy of 
second order in time step τ of the initial equation (35) 
on the interval [tj-1, tj+1].  
 
Finally, we get   

 )(
2

2
1

τϕ
τ
ϕϕ of jjj

jj

+=Λ+
−+

     (46) 

 
To find the solution of the system (37), we consider 
the first equation, the second and the fourth equations 
for a fixed µ and the operators  (33) and (34). We get
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We obtain the following relations for the 
numerical solution: 
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Elements of the product are: 
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Analogously, we have 
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 At the third stage, we consider the points:  
µ0 = 0, µ1, ..., µm = 1, in the interval [0, 1] and compute 
the integrals with respect to µ, using a numerical 
integration (trapezoidal approximation): 
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Then, the system (37) can be written in the form: 
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In this choice of the steps, which correspond to the 
variables z, t , we use the condition:  
 

)(min 2/ii
z∆≤τ       (53) 

 
 

3  Numerical example 
  
We wish to find the solution of the problem (35): 
      

      ),,,(),,(),,( tzftzA
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tzd µµϕµϕ
=+    

 
     (z,µ,0)∈ [0,4] ×[0,1] × [0,2]. 
          
     ),()0,,( 0 µϕµϕ zz =                         
 
Let us consider the partition of [0,4] into four 
subintervals of equal length by points: 
 
    z0 = 0 < z1/2 <  z1 < z3/2 <  z2 = 4 
with:  
       ∆ z0 = z1/2  -  z0 = 1;  ∆ z1/ 2 = z1  -  z0 = 2;  
       ∆ z1 = z3/2  -  z1/2 = 2;  
       ∆ z3/2 = z2 -  z1 = 2;  ∆ z2 = z2  -  z3/2 = 1. 
 
The partition of the interval [0, 1] is:  
 
              µ0 = 0 < µ1 = 1/2 < µ2 = 1. 
 
For the variable t, we consider the regular partition of 
the interval [0,2] by the points: 
t0 = 0 < t1/3 < t2/3 < t1 < t4/3 < t5/3 < t2 = 2.  
The initial value problem is defined by: 
  
 ( ) ( )1,1,1,1,1,,,, 0
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0 == uvuvuϕ       
 
The functions σ (z), σs(z) and f, which here depends 
only of µ are defined with the help of the fig.1 and 
fig.2. The values of { }2,2/3,1,2/1,0, ∈iiϕ  with 
respect to µl and tj are presented in table 1. 
    
 From the relations (8) and using the mean 
values for u1/2, v1, u3/2 we obtain the density, ϕ +, for 
µ> 0 and the density, ϕ -, for µ < 0 for each value of zi 
and tj : 
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                             Fig. 1           Fig. 2 
 
           Table 1  

        t  = 1/3 t  = 2/3 t  = 4/3 t  = 5/3 t  = 2 ϕ 
µ = 0 µ = 

1/2 
µ = 1 µ = 0 µ = 

1/2 
µ = 1 µ = 0 µ = 

1/2 
µ = 1 µ = 

1/2 
µ = 0 µ = 1 µ = 0 µ = 

1/2 
µ = 1 

u0 1 0.69 0.44 0.92 0.67 0.46 1.25 0.97 0.69 1.17 0.94 0.71 1.17 0.73 0.38 

v1/2 1 0.98 0.95 0.62 0.62 0.59 0.95 0.9 0.82 0.59 0.56 0.5 0.59 0.54 0.43 

u1 1 0.99 0.99 0.87 0.85 0.87 1.2 1.17 1.09 1.05 1.03 0.98 1.05 1.04 0.98 

v3/2 1 1. 1. 0.56 0.56 0.56 0.89 0.86 0.79 0.5 0.48 0.44 0.5 0.5 0.5 

u2 1 1. 1. 0.69 0.69 0.69 0.99 0.99 0.92 0.68 0.68 0.64 0.68 0.65 0.59 

 
  
           Table 2 

        t  = 1/3 t  = 2/3 t  = 4/3 t  = 5/3 t  = 2 ϕ + 

µ = 0 µ = 
1/2 

µ = 1 µ = 0 µ = 
1/2 

µ = 1 µ = 0 µ = 
1/2 

µ = 1 µ = 0 µ = 
1/2 

µ = 1 µ = 0 µ = 
1/2 

µ = 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1/2 2 1.88 1.76 1.52 1.4 1.32 2.17 2 1.77 1.7 1.56 1.35 1.7 1.47 1.2 
1 2 1.99 1.97 1.5 1.44 1.44 2.12 2.05 1.9 1.6 1.55 1.45 1.6 1.6 1.45 

3/2 2 2 2 1.37 1.36 1.37 2 1.97 1.83 1.4 1.39 1.31 1.4 1.4 1.35 
2 2 2 2 1.38 1.38 1.38 1.98 1.98 1.84 1.36 1.36 1.3 1.36 1.3 1.2 

 
           Table 3 

        t  = 1/3 t  = 2/3 t  = 4/3 t  = 5/3 t  = 2 ϕ - 

µ = 0 µ = 
1/2 

µ = 1 µ = 0 µ = 
1/2 

µ = 1 µ = 0 µ = 
1/2 

µ = 1 µ = 0 µ = 
1/2 

µ = 1 µ = 0 µ = 
1/2 

µ = 1 

0 2 1.4 0.87 1.85 1.34 0.92 2.5 1.94 1.38 2.34 1.88 1.42 2.34 1.46 1.96 
1/2 0 0 0 0.27 0.18 0.14 0.27 0.2 0.14 0.5 0.44 0.39 0.5 0.29 0.35 
1 0 0.4 0.02 0.28 0.26 0.29 0.3 0.28 0.29 0.51 0.51 0.51 0.51 0.52 0.52 

3/2 0 0.06 0 0.25 0.24 0.24 0.24 0.25 0.25 0.41 0.43 0.43 0.42 0.4 0.35 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
 
 

1 
 
 
O  

    1/2     1   3/2    2              z

 σ 
σ = σ(z) 
 

σs 

     f 
 
     1 
   0.9 
 
   0.7 
 
 
 
   O    1/2          1            µ 
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It  has been shown above, when µ > 0, the density 
ϕ + has a maximum value in t = 4/3 and a minimum 
value in t = 2/3. When µ < 0, the density ϕ - has the 
same value as ϕ + in z = 1 and t = 2/3, but in t = 1/3, 
ϕ - ≈ 0. Also, we remark that the density ϕ - and ϕ + 
increase when µ decrease.  

The results of this numerical example 
prove its practical importance: how depends the 
density in a point z at the time t for different values 
of angle ν.  
 
References: 
 [1]. Ackroyd R.T., Gashut A.M., O.A. Abuzid O.,  
       Discontinuous Variational Solutions for the   
       Neutron Diffusion Equation, Ann. Nucl.    
       Energy, 23, (1996), 1289. 
 [2]. Case K. M.  and Zweifel P. F.,  Linear  
        Transport Theory, Addison-Wesley,   
        Massachusetts, 1967.  
 [3]. Davis W. R.,  Classical Fields, Particles and  
        the Theory of Relativity , Gordon and  Breach,   
        New York, 1970. 
 [4]. Glasstone S.  and Kilton C.,  The Elements  of  
         Nuclear Reactors Theory, Van Nostrand,  
         Toronto – New York – London, 1982. 
 [5]. Marchouk G.,  Méthodes de Calcul  
          Numérique, Édition MIR de Moscou, 1980. 
 [6]. Marchouk G.  and Shaydourov V.,         
         Raffinement des Solutions des Schémas aux  
         Différences, Édition MIR de Moscou, 1983. 
 [7]. Marciuk G. and Lebedev V. ,  Cislennie    
          Metodî v Teorii Terenosa Neitronov,  
          Atomizdat, Moscova, 1971. 
 [8]. Martin O.,  Une Méthode de Résolution de  
          l’Équation du Transfert des Neutrons, 
         Rev.Roum. Sci. Tech.- Méc. Appl., 37,6, 
         (1992), 623-646. 
  [9] Martin O., Analytical and Numerical Solutions  
        for One- Dimensional Transport Equation, 
        WSEAS TRANSACTIONS on CIRCUITS and  
        SYSTEMS, 3,7(2004), 383-389. 
[10]. Mihailescu N.,  Oscillations in the Power  
          Distribution in a Reactor, Rev. Nuclear  
          Energy, 9, 1-4 (1998), 37-41. 
[11]. Mokhtar-Kharroubi M., Topics in Neutron  
         Transport Theory, Series on Advances in  

         Math. For Applied Sciences, Bellomo and  
         Brezzi, 1997.   
[12].  Ntouyas S. K., Global Existence for Neutral  
          Functional Integral Differential Equations,  
          Proc. 2nd World Congress of Nonlinear  
          Analysts, 1997, 2133-2142. 
 [13]. Parton V.Z., Perlin P.I., Mathematical  
          Methods o f the Theory of Elasticity, MIR  
          Publishers Moscow,1984. 
[14].  Pilkuhn H.,  Relativistic Particle Physics,  
          Springer Verlag, New York - Heidelberg- 
          Berlin, 1980.   
 [15].  Rahnema F., Ravetto P., On the Equivalence  
          on Boundary and boundary Condition  
          Perturbations in Transport Theory, Nuclear  
          Sci. Eng., 128 (1998),  209-223. 
[16]. Weston M., Stacey M., Nuclear Reactor  
         Physics, Wiley, New York, 2001. 
[17]. Julia Bondarenko, NikosMastorakis,“Solution  
         of Partial Differential Equation for the Option  
         Price by Means the Modified Parametric  
         Method”, WSEAS Trans. On Mathematics,  
         Issue 4, Volume 3, October 2004, pp.737- 
         743. 
[18]. Nikos Mastorakis, “Numerical Solution of  
         Non-Linear Ordinary Differential Equations  
         via Collocation Method, WSEAS TRANS. on  
         INFORMATION SCIENCE & APPLICATIONS,    
          Issue 5, Volume 2, May 2005, pp.467-473. 
[19]. Nikos Mastorakis, Olga Martin, About the  
         Numerical Solution of a Stationary Transport  
         Equation”, WSEAS TRANS. on INFORMATION  
         SCIENCE & APPLICATIONS, Issue 9, Volume  
         2, September 2005, pp.1373-1380. 
 
 
 
  
           
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp106-116)


