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Abstract. The initial-boundary value problem for a non-stationary transport equation is considered. This is rewritten as a Cauchy
problem: dep /dt + Ap=F, (/)K: o = ¢. The unknown ¢ represents a suitable subset of a Hilbert space, whose elements are pairs of
real-valued functions depending on three variables: a space variable ze[0, H], an angle variable v, with ¢z = cos v € [0, 1] and a
time variable te[0, T]. A difference scheme is given in order to approximate the space derivatives appearing in A. Then, the
operator A is decomposed as A = A; + A, and another difference scheme is given to approximate the time derivatives. Finally, the
numerical integration with respect to x is carried out. One obtains an algorithm, which approximates the exact solution with an

accuracy of second order in time step zand in space step h. Several numerical examples are included.
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1 Introduction

The main problem in the nuclear physics is to find the
neutron distribution in the reactor, hence its density, ¢.
This is a scalar function, which is studied in a plan-
parallel geometry and depends on the next variables:
the position of the neutron on the Oz - axis, the
neutron speed, which makes an angle v with Oz and
the time, t. The density is the solution of an integral
differential equation, named the non-stationary
neutron transport equation.

Many authors paid attention to this
problem, [2],[5],[6],[10],[14], but their papers are
theoretical studies. In this paper we present an
algorithm inspired by a splitting-up method, [5],
applied to a non-stationary transport equation. In
the general case, this method is hard to use, but
for any symmetry of the source function, it leads
to an algorithm flexible. We prove that the
operators of the problem are positive. Also, we
determine an aprioristic estimation of the solution.

The study of the approximation of the solution
with respect to time step, z, shows that it is of the
# order. The numerical examples prove that the
errors, which correspond of the approximate
solutions, are minimum.

2 Problem formulation

Let us consider a transport equation in a plan — parallel
geometry:

1 -a¢+,ua¢+0'~(p:0-5
v, ot " 0z 2

Tlcodw fzuwt) (O

with the following boundary conditions:

¢=0ifz=0, u>0

2
¢=0ifz=H, p<0 @)

and the initial condition:



p=0¢°ift=0. (3)

The unknown ¢ of the problem (1) — (3) is the density
of the particles. These move with the speed v, , which
makes an angle v with the real axis Oz at moment t
and z = cosv. The right-hand side of (1), f, is the
radioactive source, the functions o, o are continuous
in the interval [0, H] and satisfy the conditions:

O<oy<0o<0, <
0<o, <o, =0-0; (4)

’ .
0<o, <0, <

Further on, we consider for simplicity, v. = 1. Using
the notations:

e =@ ut); 0 =@ -1t (5)

where u > 0, the equation (1) can be rewritten in the
form:

op* op* o, ~
—tu—+ =—[(p"+o )du+ f*
o TH e 2{(40 @ )du
(6)
Bl o~ ol _ _
—— —u—-+o =—[(p* + du + f
"> ) g(co @~ )du
Substituting: £ = - 1> 0, we get:
0 0
[o(z, 1, )du = —I oz~ t)du' =
-1
1
= [z~ )du' —I(p du
0
The boundary value problem becomes:
o (0, 1) =0; @ (H,1,1)=0
Yu e[0]], vt €[0,T] @)

Adding and subtracting the equations (6) and
introducing the notations:

1 1
==(p" +0¢~ == (ft+f-
u 2(¢ +¢7) g 2( +17)

1 1
v=—(p" -~ r=—(f"+f"
2(¢ ®°) 2( )

(8)

we obtain the following system:
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ou N ou= ajud +g
FIaEarT: a

ov ou
—+pu-—+0-V=T.
ot 0z

9)

The boundary - initial conditions are:
u+v=0 for z=0
(10)
u-v=0 for z=H
and respectively:
u=u’, v=\° for t=0. (11)
Now we rewrite the problem (9)-(11) in a operator

form. For this purpose, we introduce the vector
functions having two scalar components:

o) )

and the operator

1 0
G_O-sjd/ul ;ua_
A= K z (13)
'UE o

Let us define in the measurable set D = [0, H]x[0,1], a
Hilbert space L,(D) with the scalar product for every
fixed t:

(@(®), SO) =3 [Oufa’ (2. ) 2. nt)lz (14)
0 0

i=1

where o ', B " are the components of the vectors
functions «, gB. Then, we shall isolate in L,(D) a set ®
in the following manner:

= {W|W (S LZ(D)’ (AW! W) < OO}

Finally, we consider @y — @, the subset of functions w
with the next properties: are continuous, have ow/oz
continuous on D and the components u, v verify the
conditions (10).

Let us define the operator

0
L=—+A 15
Py (15)

with the domain, D(L) = ®,.
Consequently, the problem (9) — (11) becomes:



M pw=F (16)
ot

(z, u,t) e Dx[0,T], D=[0,H]%[0]]
w(z, #£,0) =w°, V(z,u)eD (17)
FelL,(Dx[0,T]), w°’°e® wed,.

We prove that A positive operator, namely,
(Aw,w)> 0 for each w =0. We have

(Aw, w) =
1 H 1
[duf|ou? —asujud,u’+,uu@+,uv8—u+av2 dz
0 0 0 0z 0z

(18)
Using the Holder inequality, we obtain

10 o)

Finally, for oy < o we get

(Aw, w) > UCZ{@udyJZ - @ud,ujzjdz +

H
dyj[avz + yi(uv)sz >
0 0z

o

(19)
ulle)? = (p7)?I5 du =

-l>||—\ .hlr—\
Ot O—F

u((@*)? +(p7)?)du >0

according with (7). If the operator L is positive, then
the equation:

Lw=F
has only one solution. Indeed, let wy;w be an element
such that

Lw; =F.

Hence, LWw-w;)=0= Lw=0 = (Lw,w)=0.The
operator L is positive, such that W =0= w = w;.

In order to get a solution of the problem (16),
we go through three stages.
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First, a difference scheme is given in order to
approximate the space derivatives which appearing in
A. We consider on z — axis two points systems:

- a principal system, {z}«, k €{0,1,...,N} with z,
=0and zy =H;

- a secondary system,{z12} K €{0,1,...,N-1},
which verifies the inequality: z 1< Zx < Zxs12.
Integrating the first equation (9) on the intervals:

(20, 2112), ( Zkvzr Zisare ), Ke{1, 2,..., N-1}, ( Znev2, Zn)
and the second equation on ( zq1, zx),ke{1, 2,..., N-1},
the system can be written in the form:

ZlJ[Z q I d le(z q
— |uaz+ u — 0z + oudz =
ot 4 2 012 2

- o, dzjudy + fod 20)

Zp 20

0 jvdz+ jl udZJrjavdz—zjlrdz
ot Ko )

2o 20 20 2o

Zk+1/2 &k+112 gy Zk+1/2
Judz+u | Yz + [oudz =
6t Zk-1/2 Zk-1/2 Zk-1/2
K41/ 2 Zk41/2
= [ o dzjudy+ [ gdz
ZK-1/2 0 Zk-1/2
Zk41 &+ 0 Zk41 Zk4+1
— Jvdz+u | Y gz 4 Jovdz= [rdz
ot Zk Zk 0 ZK Zk
(21)
ZN N av ZN
fudz+pu [ —dz+ [oudz=
IN-1/2 IN-1/2 IN-1/2
AN 1 ZN
= [ o,dzfudy'+ [gdz
IN-1/2 0 IN-1/2
O N IN Ou IN IN
— [vdz+u [ —dz+ [ovdz= [rdz
IN-1 IN-1 IN-1 IN-1
With the following notations:
AZg =12y =2, AZy =Zyi9/5 — Zk_qy2
k=12.,N-1
(22)
AzZy =2y —Zy_y20 AZy gy =7} — 24y,
k=12,..,N

we define the mean values:
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1 Zk+J_1/2 q 1 ZkJ_+1 d
A k ZK_1/2 " Az k+l/2 Zy
L "5, d 23)
(o2 = O Z
A Zy z 1/2S
1 Zk+l/2 1 Zk+1
9¢ = Jgdz,  ryy=—— [odz
Az k Zk-1/2 : A k+1/2 1z
Let h—orpax (Azg,Azy,AZ,AZy,y,). Dividing
<k<N-1
the first equation (20) by A z, and the second by A zy;
we obtain:
1/2
o)1 juz+y [V]Z“2+
ot| Az, 4
To@ue
+ o(z)u(z, u,t)dz =
AZO 20

1
O
1

1 42 1 42
[o.udz dy+A [gdz  (24)

AZ0 ] 0 2o
3
i{ ! jvdz}ry [u]2
Ot| Azyy 4 Zy/2
1 i 3
+ [ovdz = [rdz
2112 2 2112 7

In accordance with the boundary conditions:

1/ ., _ 1
Vo_V|z O_E((P -Q ]z:Oz_E (25)
1( ., _ 1 _
Ug =U|z—o=—((/’ +o )2:0 =0 (26)
2 2
we have: Vo = - Up and the relation (24) can be
rewritten in the form:
o U, Vijp +Ug 1 ,
+ +o,U, =0, (U du’ + q,,
Y H Az, oUo soz'). o0u + Qg
1 42 q (27)
= z
Oo Az, zj;g
oV u, —
Y7oy — + 012V =Ny

ot Azy,

where the functions u, v are replaced by their values
in the points: z=0,z =1/2,z =1 and by mean values.
Similarly, we get

aUk+ Vierr2 = Vi

+o.u =
ot Az, KoK
1
= j WA’ + gy
“o
(28)
OVi1/2 Up,p — Uy
+ +0 Vii1/2 = Nei1/os
ot ST k+1/2Vks1/2 = Tka1s2
k=12..,N-1
OVy_1/2 Uy —Ung

+ONa2VN-2 = TN
ot AZy

(29)

ou Uy — Vy_
N+ N N-1/2

1
+oyUy =0, [uydu +
T H Az, nUn sNg nOi + gy

where uy = Vy.

Let us consider M(0, 2N), the Hilbert space of the

vector functions a = ( a, aup, a,... an ) with the
scalar product:
2N 1
(avﬂ)ZZIAzilzailzﬂilz du (30)
i=00
and the norm:
||a||:1/(a,a), aeM(0,2N). (31)

We define the vector functions:

@ =(Ug,Vay9,Up ey Uy g, Viy g7, Uy)
f=(90.M2,910 9n1: MNi1s2,On) (32)

0 0,0 .0 0 0 0
@ =(Ug Vi, Uy yeeers Uy g5V 172, Un )

and the operator: A =L -S, where

Hiog L0 o 0 0
AZO O'O
s, —0on 0 0
AZyyy Azyy,
L= A A A AA A A
0 0 0 0A oy, ——
AZn_qy2
0 0 0 oA -—F% + oy
i Azy Azy



1
S = diag(asilzfyi,z d,u}i =01,....2N;
0

e (34)
B 1 if i/2 isentier number
Y12 =0 if /2 is rational number.
Then, the system (27) — (29) has the form:
d—¢+Ag0=f, te[0,T]
dt (35)

o(z,1,0)=9°

where o, f, ¢ ° were defined by (32). For simplicity of
the writing, we use the same notation as (1) — (3).

We shall prove that L and A are the positive
operators. Indeed, let we M and then

1/2

Az | u Wivir2 ¥ Wis1/o
' Az,

+ O-iWiJWid:u +

Wiy — W

i
A + Oi12Wina)2 J Wi, 0u +
Zisy2

1 Wy + W
N N-1
(ﬂ—

+ oWy |Wydu =
Zy

1 2N 1
= [ p(w§ + wg)du + 2 [ AZ;;,001,W, du >
0

i=0 0

oN 1 )
> 0y El gAZi/zwiZ/zdﬂ = 0'0” W" >0

because continuous functions on [0,H],s;, are bounded
on [0,H] and by hypothesis ¢ > o > 0. Using above
results, we obtain:

1
(Aw, w) == [ z(wg + wg )dp +
0

N
p=4

J’_

o—r

1
. AZi 15 (051 Wi 2 = O, Wiy 2| Wi 271200 )d e
0

1 2N 1
> Jy(WS + Wl%l )du + .Zo J.AZi,ZWiZ,Z(Ui,Z - O-Si/z)d’u
0 = 0

> oy w|® > 0.
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Now, we find an aprioristic estimation of the solution
of the problem (35), using the Cauchy-Schwarz
inequality and the property that A is positive.
Multiplying scalar (35) by ¢ and integrating with
respect to t, we get

1 t t .
Slol + [ (Ao, )t = (£, p)at +§||(,,o||2 .
0 0

t ) 112 7y , 1/2 1 )
(e ] 301

0 0

Co 2l 1/2

<cffifac] | fean o]

Lhpo[?
5l <

t ) 1/2 t 1 ) 1/2
sc@”f” dt’j (g(A¢,¢)dt’+E”¢)”j .

1 2
+ =l
1
Using the following inequality
1 2 2
|ab|§—a +¢eb%,e>0
4e
we find the estimation of the solution ¢ of the form:

? t ! h 2 2
lo]” + [ (Ap, p)dt’ < K(f”f” @t + o] )
0 0
where the constant K does not depend on t and ¢.

In the second stage a difference scheme is
given to approximate the time derivatives. This is used
together with the bicycle splitting-up method,[5],
which writes the operator A as a sum:

A®) = Au(t) + As(t) , Au(t) > 0, Ag(t) > 0 (36)

Let us divide the close interval [0, T] into n
subintervals by choosing points: to =0, ty, ...., t, =T.
Next, we take an arbitrary subinterval: [t;.4, tj.1] =

= [ G, G JO [ tae, § 19 [ 4 Gz 1U[ Gae, G ],
which has the length equal to 5z, where 7 is the time
step. Approximating the operators A;, A, on this the

subinterval by: A{( =A(t;) k=12, we shall obtain

from (35) a difference system using the Krank-
Nicholson scheme, [5]:



j-2/3 j-1 j-2/3

AV A
T 2

4

i-1/3 _ _j-2/3 o213 j-1/3
! 1) i@ + @
+ A =
2

T 2

j-213 _ _j4

uz £ (37)
2t

j+1/3

j+2/3 j+1/3 j+2/3 |
% -Q i +o ~0

+A) 1
T 2
1 j+2/3 ) j+2/3
% % +A11 (/7 +(/’ -0
T 2

where f is the vector with the components:

,- 1 i .
fl =———— [fidt, t; = jc

ti, -t

j+1 -1t

In other form we obtain:

-1
¢i‘2’3:(E+%A{j (E—E/\Jj Tl it

j-1/3 _ T11,,j-2/3
@! =T, ¢!

QI3 = i3 4 27 fi

_ o (38)

(01+2/3 — TZJ¢J+1/3

¢j+1 — le¢j+2/3
where E is unit matrix and :

i T Aiyt T Ad
T =€+ A E-SAD (39)

Finally, we have the recurrence formula

P =TT T it + 2:T)T) 1 = (40)

=Tipit 4 2¢TIT )£
where T/ =TT,T,T,}.

Now, we prove that numerical solution
approximates the exact solution with an accuracy
of second order in time step .
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Approximation

For the estimation of approximation order, we shall
expand with respect to the power of small <, the
expression

-1
T, :(E +£A{(j (E —1A{<) =

. 2 .
= E- Al +%(AL)2...

when EH A‘kH <1 k =12. Then
2

T)T) =E—-7Al +

200 ) _ .
+ 7[(All AL+ (Al - A‘zA‘l)} +o(z?)

where Al = (Al + AL)/2.
If AIAL = ALAL, we get

. - . 2 .
T/T) =E—-7Al + %(AJ)Z +0(z%) (42)

When the operators are non-commutative, the
approximation with the splitting-up algorithm is of the
first order with respect to 7.

Let us now consider

— ﬁ ﬁ JT JT JT i
o (21') (43)

=E-2:A) + (A2 +o(z?)

Hence, the following estimation is valid in the interval
[ti-1, tisa:

20)?

I+t =|:E—2TA1 (A))? }(p1‘1+

+27(E - z'AJ)f I +o(c?)

(44)

and
j+l j-1

i + A (E-7A g™ =(E—2A)) T +0,(2)

-9
2t
Using the Taylor series expansion of the solution ¢ in

the neighborhood of the point tj.; and substituting t; for
t, we can write:

j1
i i 0
o' =0z, ut;) =9’ l+(6_(fJ r+0(r?)  (45)
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o

j-1
Then, we eliminate (5} , writing the transport

equation (35) in the point t;.; in the form:

ot

and (45) becomes:

j-1
(a—g”] =A™+ £ 40,(7)

Pl = E-tAN+7 1 +0(r?).

T U T U
1+— ——
2 Az, 2 Az,
T
_r A 1
2 Az,
T
0 _EH
2 Az,
0 0
0 0
T T
e L
2 Az, 2 Az,
T
2 Az,
T
~ 0 re
- 2 Az,
0 0
0 0

0

rop

2 Az,

T ou

2 Az,

2' 1
1+E ao—asofdy 0
0

1 T

+—0o
1/2
2

This relation is an approximation with the accuracy of
second order in time step 7 of the initial equation (35)
on the interval [tj.1, tj+1].

Finally, we get
¢j+l _
27

i

4 +Al =11 +0(r?%)

(46)

To find the solution of the system (37), we consider
the first equation, the second and the fourth equations
for a fixed zz and the operators (33) and (34). We get

0 0 0
[, j-2/37]
0 0 0 u(} »
Viia
j-2/3
0 0 0 uy _
M
j-2/3
T u 1 T oH Vi
j-2/3
2 A7y 4, 2 Az\ 4, _U|{| ]
T T
0 L LA
2 Az, 2 Azy |
0 0 0
S
0 0 0 “? .
Vii2
0 0 0 u™
M
'—1
T u 1 _E_n ViZie
j-1
2 AZy .y, 2A7y 4, | | u ]
T T
0 rH B
2 Az, 2 Az,
0 A 0
. . ug—l/3
A i
j-1/3
Vire
. 1 Juie | =
lvy—|o -0 _[d,u A 0 !
2 1 510 M
A A A U,{,_lla
T ! )
0 A 1+—(0' -c fd,u}
2 N SNO
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1
1_1[5 . jdﬂJ 0 0 A 0
2 0 s0
0 'ugles
T
0 1—;01,2 0 A 0 v
— 1 |y 0213
0 0 1-Yo -0 fdu| A 0 !
2 1 sl0 M
A A A A A uj 2’
T ! ) B
0 0 0 A 1—5(0,\‘ —asN.([d,u]
We obtain the following relations for the
numerical solution:
. T - _l - .
¢J_1/3:[E+_A21j [E_ AJJ¢J—2/3
1 0 0
l+o,7/2
1
j-1/3 _ 0 _ .. 0
4 = 1+0,,,712
0 0 _
1+o,,7/2
[ O,T i Oy 1 ]
1-—2 !+ ——([ul™?"?d 0 0
[ 5 j 0 5 g 0 H
0 [1_ To'zllzj 1j/—22/3 0
0 0 (1— “N’jums = ful R du
L 0 i
Elements of the product are:
- . - . 1 .
¢7ij_l/3 — 1 |:(1_ T;-I j¢il_2/3 +ﬂj¢il—2/3dﬂj|, i= 0,1’.", N (47)
14 00 20
2
1 2 .
s 1701712 i g5 N (48)

Analogously, we have
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L 1
q)ij 2/3 - = .
70
1+
70, i o L
|:[1_le (pij+1/3 + 25| I(pij+1/3d#:|' (49)
0

i=0,1..,N

. 1-0 4,712 . .
ol =T TRTE 1S =12, (60)
i-1/2

At the third stage, we consider the points:
=0, s, ..., thy = 1, in the interval [0, 1] and compute
the integrals with respect to g, using a numerical
integration (trapezoidal approximation):

fw(u)dﬂzﬁslw v =y () (51)
: .

Then, the system (37) can be written in the form:
T i i T i i—
(E +EA11,|)¢’|J 7= (E _EAlj,l)(plj '
T i i— T i i—
(E "‘—Azj,|)(/’|J 3 = (E ——Azl,l)(l’lJ 2e
2 2
(/7|j+1/3 = ¢|j_1/3 + 27 f|j (52)

’Z' . - ’Z' - -
(E JFEAZJJ)(MHZ/3 =(E _EAzl,l)@lHl/3

(E+EA11,|)¢|J ' Z(E_EA1J,|)(/7|J 213

In this choice of the steps, which correspond to the
variables z, t , we use the condition:

rSmiin(Azi,z) (53)

3 Numerical example

We wish to find the solution of the problem (35):

W+ Ag(z, u,t) = f(z, 1, 0),

(z,14,0)e [0,4] x[0,1] x [0,2].

@(Z,ﬂ,O) = (DO(Z,,U)

Let us consider the partition of [0,4] into four
subintervals of equal length by points:

20=0<21p< 21<23p,< 2,=4
with:
Azg=21p - 20=1; Azy2=21 - 20=2;
A21=173 - L1p=2;
AZzyp=1,- lez; AZZ:ZZ - Z3/2:1.

The partition of the interval [0, 1] is:
H=0<m=12<1,=1.

For the variable t, we consider the regular partition of
the interval [0,2] by the points:

th=0<tyz<tys <t <tys<tyz<t,=2.

The initial value problem is defined by:

0° =(u0.v35.u0 v, u0)=(111,11)

The functions o (z), os(z) and f, which here depends
only of u are defined with the help of the fig.1 and
fig.2. The values of ¢;,ie{0,1/2,1,3/2,2} with

respect to £ and tj are presented in table 1.

From the relations (8) and using the mean
values for uy;, vi, Uz, We obtain the density, ¢ *, for
1> 0 and the density, ¢, for < 0 for each value of z
and t; :
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@ (L2, 1,t) =V, +% ¢~ (0—p,t)=2Uq, ¢ (2—1,1)=0
o L pt =y, + o W2 =" "y,
0 @12 =y + T (), 2T
PR uD=2, ¢ OuN=0 ¢ @2u)= 0y,
fa
1

12 1 32 2 z 1/2 1 U
Fig. 1 Fig. 2
Table 1
@ =1/3 =2/3 t =4/3 t =5/3 t =
u=0 | pu = pu=1|pu=0 =l p=1|pu=0|pu =|p=1|p = | pu=0|pu=1|u=0|pu =|u=1
12 12 12 12 12
Ug 1 069 | 044 | 092 | 067 | 0.46 | 1.25 | 097 | 069 | 1.17 | 094 | 0.71 | 1.17 | 0.73 | 0.38
Vi 1 098 | 0.95 | 062 | 0.62 | 0.59 | 0.95 0.9 0.82 | 0.59 | 0.56 0.5 059 | 0.54 | 043
up 1 099 | 0.99 | 087 | 0.85 | 0.87 1.2 1.17 | 109 | 1.05 | 1.03 | 0.98 | 1.05 | 1.04 | 0.98
Vap 1 1. 1. 0.56 | 0.56 | 0.56 | 0.89 | 0.86 | 0.79 0.5 0.48 | 0.44 0.5 0.5 0.5
Uy 1 1. 1. 0.69 | 069 | 0.69 | 099 | 099 | 092 | 0.68 | 0.68 | 0.64 | 0.68 | 0.65 | 0.59
Table 2
o+ =1/3 =2/3 t =4/3 t =5/3 t =
u=0 | p =|p=1 | pu=0 | g = u=1 | =0 | pu = | pu=1|p=0|p =|p=1|pu=0|p =|p=1
12 12 12 12 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/2 2 1.88 | 1.76 | 1.52 1.4 1.32 | 217 2 1.77 1.7 156 | 1.35 1.7 1.47 1.2
1 2 1.99 | 1.97 15 144 | 144 | 212 | 2.05 1.9 1.6 155 | 145 1.6 1.6 1.45
3/2 2 2 2 137 | 1.36 | 1.37 2 1.97 | 1.83 14 139 | 131 14 14 1.35
2 2 2 2 138 | 1.38 | 1.38 | 1.98 | 198 | 1.84 | 1.36 | 1.36 1.3 1.36 1.3 1.2
Table 3
Q- =1/3 =2/3 t =4/3 t =5/3 t =
=0 | g = pu=1|p=0|p = pu=1 | pu=0|pu = | pu=1|pu=0 | pu =|pu=1|u=0|pu =|pu=1
1/2 1/2 1/2 1/2 1/2
0 2 14 0.87 | 1.85 | 1.34 | 0.92 25 194 | 138 | 234 | 188 | 142 | 234 | 146 | 196
1/2 0 0 0 0.27 | 0.18 | 0.14 | 0.27 0.2 0.14 0.5 0.44 | 0.39 0.5 0.29 | 0.35
1 0 0.4 0.02 | 0.28 | 0.26 | 0.29 0.3 028 | 0.29 | 051 | 051 | 051 | 051 | 0.52 | 0.52
3/2 0 0.06 0 025 | 024 | 024 | 0.24 | 0.25 | 0.25 | 041 | 043 | 043 | 042 04 0.35
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




It has been shown above, when > 0, the density
¢ " has a maximum value in t = 4/3 and a minimum
value in t = 2/3. When x < 0, the density ¢~ has the
same value as ¢ "inz=1and t=2/3, butint=1/3,
¢~ 0. Also, we remark that the density ¢ "and ¢ *
increase when u decrease.

The results of this numerical example
prove its practical importance: how depends the
density in a point z at the time t for different values
of angle v.
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