
Estimation Level Fusion in Multisensor Environment 
 

VLADIMIR SHIN1, RASHID MINHAS1, GEORGY SHEVLYAKOV2, KISEON KIM2 
1Department of Mechatronics, Gwangju Institute of Science and Technology, 

Gwangju, Republic of Korea 
Tel: +(82)-62-970-2397, Fax: +(82)-62-970-2384 

 
 

2Department of Information and Communications, Gwangju Institute of Science and Technology, 
Gwangju, Republic of Korea 

Tel: +(82)-62-970-2207, Fax: +(82)-62-970-2204 
 

Abstract: - The integration and fusion of information, from a combination of different types 
of instruments (sensors), is often used in the design of control systems. Typical applications 
that can benefit the use of multiple sensors are industrial tasks, military command, mobile 
robot navigation, multi-target tracking, and aircraft navigation. In recent years, there has been 
growing interest to fuse multisensor data to increase the accuracy of estimation parameters 
and system states. This interest is motivated by the availability of different types of sensors 
having different spectrum characteristics. The observations, used in the estimation process, 
are assigned to a common target through association process. If it is decided that all local 
sensors observe the same target, then the next problem is how to combine (fuse) the 
corresponding local estimates? 
A new algorithm, for estimation level fusion, is proposed that uses optimal mean square 
combination of arbitrary number of local estimates. Local estimates are produced by applying 
Kalman filter on individual sensor measurements. 
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1. Introduction 
A data fusion system is needed to estimate 
the state of system based on combined 
information from sensor measurements. 
Many of the techniques developed for data 
fusion attempt to emulate the ability of 
human to perform fusion [1]. Fused data 
from multiple sensors provides several 
advantages over data from single sensor. 
First, if several identical sensors are used, 
combining the observations will result in 
an improved estimate of the target position 
and velocity [2]. 
 The ultimate target of well designed 
system is large gain of information with 
minimized and real-time processing. The 
integration and fusion of information is 
used in design of high-accuracy control 
systems. Multiple sensors in a system are 
used to attain the higher level of accuracy 
in real-time environment. Multiple sensors 
can be used in a system for different 
purpose like target tracking, guidance and 
surveillance, industrial and scientific 
applications [4], [5]. 

 
In [6], the fusion formula which represents 
an optimal mean square linear 
combination of local estimates with 
weights depending on cross-covariance of 
estimation errors was derived. In this 
paper we applied the fusion formula [6] in 
filtering problems for accurate state 
estimation, while the measurements are 
processed in parallel architecture for real 
time results. 
 
This paper is organized as follows, in 
section 2, the filtering problem in multi-
sensor environment is described with 
derivation of new filter from fusion 
formula. In section 3, the proposed filter is 
tested for state estimation of different 
dynamic systems in multisensor 
environment, section 4 contains 
concluding remarks.   

2. Global Estimation Filtering  
Based On Fusion Formula 

Consider a continuous-time linear 
dynamic system   
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where nR∈tx  is the state vector, nR  is an 
n-dimensional Euclidean space, ( )tt Q0,~v  
is the normal distributed white noise with 
zero mean and intensity 

tQ . Suppose that 
the system has N sensors, 
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where ( )(i)
t

(i)
t R0,~w . We assume that the 

initial state ( )000 P,xN~x , system noise 
tv ,   

and measurement noise N,,1i,w (i)
t Κ=  are 

mutually uncorrelated.  

State estimate is based on the overall 
measurements 
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In case of limited computing and 
communication resources, the classical 
Kalman filter (KF) can not produce well-
timed results as it requires observations, 
from all sensors, to computer state 
estimate, requiring higher communication 
bandwidth and computation. Here we 
show that the fusion formula [6] may serve 
as an alternative to solve this problem. The 
derivation of new filter is based on idea 
that the individual sensor measurements, 

(1)
ty ,…, (N)

ty ,  can be processed in 
decentralized or distribution fashion 
instead of centralized architecture.  

Suppose we have N  local estimates  
 

,x̂,,x̂ (N)(1) Κ                               (4) 
 

of a state vector 
tx , obtained by applying 

Kalman filter on individual sensor 
measurements (1)

ty ,…, (N)
ty ,  respectively. 

Let associated local error covariances are  
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The global estimate representing the linear 
combination of local state estimates is 
calculated as  
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where nI  is the nn ×  unit matrix, and 
(N)
t

(1)
t c,,c Κ   are nn ×  constant weighting 

matrices determined from the mean square 
criterion 
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The following theorem completely defines 
global estimate ge

tx̂   and its error 
covariance  
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Theorem [6]. Let  (N)

t
(1)
t x̂,,x̂ Κ  be the 

local Kalman estimates (LKE) (4)  of an 
unknown  state tx  . The weighting 
matrices (N)

t
(1)
t c,,c Κ   are given by  
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Corollary 1. If (N)

t
(1)
t x̂,,x̂ Κ  are unbiased 

local estimates then the global  estimate 
ge
tx̂   in  (6)  is unbiased too. 

 
Corollary 2. The global estimate error 
covariance ge

tP   is given by 
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According to (1) and (2), we have N   
dynamic subsystems ( N,1,i Κ= ) with the 
state vector nR∈tx  and the individual 
sensor imR∈(i)

ty : 
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where  i  (the number of subsystem) is 
fixed. 

To find local state estimate (i)
tx̂  we can 

apply the optimal KF to the subsystem (10) 
[5], [7].  We have 
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The global estimate, ge
tx̂ , of the state 

tx  
based on all LKEs (11) is computed by 
applying fusion formula (6), i.e., 

 

.Ic,x̂cx̂ n

N

1i

(i)
t

N

1i

(i)
t

(i)
t

ge
t == ∑∑

==

  (12) 

 

The cross-covariance, (ij)
tP , where ji ≠ ,  for 

computation of time-varying weighting 
matrices (N)

t
(1)
t c,,c Κ , (8), is given by  

following differential equation: 
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Eqs. (8),(11)-(13) completely define 
global estimation filtering based on fusion 
formula.. 
 

Remark 1. The LKEs for individual sensor 
measurements are calculated mutually 
independent in parallel processing scheme.  
 
Remark 2. The proposed algorithm is 
robust i.e. eliminates the diverging LKE in 
computation of global estimate. 
 
Remark 3. The proposed algorithm 
supports distributed, decentralized fusion 
systems.  

 

3. Experiment 

3.1. Damper Harmonic Oscillator 
with Multisensor Environment 

Consider a two dimensional model of the 
harmonic oscillator [7] 
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where [ ]Tt2,t1,t xxx =  and t1,x is position, 
and t2,x is velocity, ( )q,0~vt

,  

( )000 P,xN~x  represent normally 
distributed system noise and initial state.  
The measurement model containing two 
sensors is given by 
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where (1)H  and (2)H  are 21×  
measurement matrices, ( )1

(1)
t r,0~w  and 

( )2
(2)
t r,0~w represent white noises; 

uncorrelated mutually and with 
tv , and 

0x . 
The optimal KF is applied to measurement 
model for estimation 
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The global estimate is calculated based on   
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where (1)

tx̂  and (2)
tx̂  are local Kalman 

estimates based on the single sensor 
measurement models:  
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This experiment deals with three programs 
of measurement: 
Program 1. Position t1,x is measured by 
two sensors i.e.  
 
 [ ],01H(1) =   [ ];01H(2) =  
 
Program 2. Velocity t2,x  is measured by 
two sensors i.e.  
 
 [ ],10H(1) =  [ ];10H(2) =  
 
Program 3. Position and velocity both are 
measured by sensor-1 and sensor-2 
respectively  i.e.  
 
 [ ],01H(1) =  [ ];10H(2) =  
 
Comparison of estimation results and error 
covariance shows the behavior of optimal 
KF and the global estimation filter, 
let ,1q,16.0,64.02

n === αω  
02.0r1 = , 01.0r2 = , and [ ]12diagP0 = .  

Mean square error (MSE) of optimal KF 
and global estimation filter is represented 
as, 
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Following figures show the robust nature 
of proposed filter, using measurement 
program 3. First sensor observing position 
while second is dedicated only for velocity 
observation.  

In measurement program – 3, each sensor 
is observing different dynamic system 
component, accuracy of local estimate 
depends upon actual observance of 
respective sensor. Sensor – 1 originally 
observing position can make accurate local 
estimate of position rather than velocity as 
depicted in figure 1. The global estimate 
computed is not much affected because of 
robust nature of proposed filter i.e. weight 
of diverging estimate tends to zero causing 
less  effect on global estimate. Individual 
local estimates are not reliable because of 
diverging behavior, spatial and temporal 
coverage limitation. 
 

 
Figure 1: Comparison of Local, Global Position 

Estimation 
 
Figure – 2 shows comparison of local 
estimates and global estimates for velocity. 
Its clear that sensor – 2, observing velocity, 
produces precise LKE while sensor -1 
produces diverging LKE but in 
computation of global estimate diverging 
LKE is eliminated. 
 

 
Figure 2 : Comparison of Local, Global Velocity 

Estimation 
 
Figure – 3 represents MSE analysis of 
optimal KF and global estimation filter, 
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we observe that differences between KF
tP  

and  ge
tP  are negligible especially for 

steady-state regime.  
Figures 1-3 show that proposed filter 
exhibits efficiency i.e. quality of estimator 
increasing with number of measurements. 
 

 
Figure 3: MSE Analysis of KF and GE Filter 

 
 
 

3.2. Estimation of Constant Scalar 
Unknown with Different Number of 
Sensors 
 
To estimate the value of unknown scalar 
“θ” using N- number of measuring devices 
while the continuous system model is  
 

θ=≥= 0t x,0t,0x&  
 
and measurement model (N- sensors) is  
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 represent normally 
distributed white noise with zero mean and 
intensities 

N1 r,....,r . We also assume that 
unknown (initial state) θ=0x  is normally 
distributed, i.e. ( )000 P;xN~x  with mean 

5.0x 0 = , variance 1P0 = .  
 
According to the optimal KF equations, 
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And final solution becomes like 
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The global estimate ge

tx̂  represents the 
weighted sum of the local Kalman 
estimates and MSE , ( )[ ]2ge
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is determined by  
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The weights (N)

t
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t c,,c Κ  satisfy linear 

algebraic equation  
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Table - 1 shows the MSE analysis of two 
filters with different sensor combinations. 
The intensities of measurement noises are 
fixed as 004.r,06.0r,1.0r,2.0r 4321 ====  
for simplicity. It is noticeable that 
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difference between both MSEs decreasing 
not only with the increase in number of 
sensors but time too.  Especially in steady-
state regime difference in both MSEs 
becomes negligible. Some clever selection 
of types, number of sensors is 
recommended subject to availability of 
resources and accuracy needed. 
 

Comparison Analysis MSE  

2 Sensors 3 Sensors 4 Sensors Time  

KF GE KF GE KF GE 

0.25 0.213 0.228 0.114 0.132 0.067 0.080 

0.50 0.118 0.125 0.060 0.067 0.034 0.039 

0.75 0.082 0.085 0.040 0.044 0.023 0.025 

1.00 0.062 0.065 0.030 0.033 0.017 0.019 

1.25 0.050 0.052 0.024 0.026 0.014 0.015 

1.50 0.042 0.043 0.020 0.021 0.011 0.012 

1.75 0.036 0.037 0.017 0.018 0.010 0.010 

2.00 0.032 0.033 0.015 0.016 0.008 0.009 

KF: Optimal Kalman Filter;  GE: Global Estimate Filter 
 

Table 1 : MSE Analysis for Different Number of 
Sensors 

4. Conclusion 
In this paper, proposed algorithm is based 
on arbitrary number of LKEs fused by 
minimum mean square error criterion. The 
parallel structure of the filter can produce 
reliable results for real-time applications in 
fields like medical, industry, military, 
target tracking, guidance system etc. The 
proposed algorithm has support for 
decentralized, distributed sensor network 
architecture, with easy and economic 
future modification in network 
architectures. 
The experiments show accuracy of 
proposed filter with increasing number of 
sensors and measurements.  
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